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* Modeling of tires covers everything from
simple models, aiming for understanding the
physics, to advanced finite-element models
that can predict the behavior precisely.

INTRODUCTION

* What we have strived to do as part of this
project is to unravel the complexities involved
in tire forces and moments by numerical
analysis as well as simulation results.
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DIMENSIONS

Length : 3998mm
Wheelbase : 2700mm
Height : 1650mm
Width : 1800mm
Track width: 1680mm

Ground Clearance : 210 mm







TIRE MODEL

In vehicle dynamics, tires
are one of the most
Important factors that
govern the behavior of a
moving vehicle. They are
the only link between the
vehicle chassis and the
road and have to transmit
vertical, longitudinal and
lateral forces.







LATERAL DEVIATION OF CONTACT POINT

* IX=FzyQ

rectangular cross-section

partial contact




e Wheelload : F: = FI' + FP = a; Az + ay (Az)" + dy Az,
* Longitudinal and lateral forces :

The longitudinal and the lateral forces are

described as functions of the longitudinal and
the lateral slips
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* Combined slip :
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SELF ALIGNING TORQUE

TS = -nky
where n is the dynamic offset of pneumatic trail
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THREE DIMENSIONAL SLIP

* On steering maneuvers at standstill, a
longitudinal, a lateral, and a bore slip will
occur simultaneously.

* Generalized slip, (2,2
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DIFFERENT INFLUENCES ON TIRE

FORCES AND TORQUES
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FIRST ORDER TIRE DYNAMICS

 Modelling aspects
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The derivatives of steady-state forces can be
approximated by global derivatives.
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dynamic tire forces can be derived from
FP = ¢c,x, + d,x and  FP = c,y, +d, 1
x ~ vxe il A y ny ny? (25)

Inserting the normalized slips defined by Eqs. (3) and (¢) into Eq. (24) and combining them with Eq. (25) yields
first-order differential equations for the longitudinal and lateral tire deflection,

(v‘}xdx } fG) Ye==0p 0Xe = fo (0y-1p Q) and (v'}ydy } fG) ggz-v}ycyye - fouy, (&)



Transition to stand still

e At stand still: angular velocity of the wheel is
Zero Q=0

* Then the differential eauation is defined by
(UN dx +jG) Ye = -—UNCxXe _jG Uy,
(ﬂN dy +fG) J, = -Uy CyYe _fG Uy, oNdy € fg,tﬁhrdy < fg,andoyd < fg

(oyd+fo) v = -vyed-fo Q.

which describes the tire dynamics



e At vanishing tire deflections,

IE:ﬂ:yﬂ:U: I,b:ﬂ:

* Above differential Equation finally merges

Into .
Xe = Uy, yﬁ':_ﬁya #&:_Qn -



PARKING AT STANDSTILL
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APPLICATION

The tire model TMeasy can handle complex parking
maneuvers which are often performed close to or in
standstill situations. In a standard layout of a front axle
suspension, wheel body and wheel rotate about the
inclined kingpin axis. In addition, tire off-set and scrub
radius force the contact point to move in longitudinal and
lateral direction during the steering motion.



Plot between longitudinal force and
longitudinal slip

 Tool used : ADAMS
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ASSEMBLY OF TIRE AND ROAD MODEL
* Tool used : Abaqus




PROPERTIES
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Hyper-Elastic Material

The material properties investigation was conducted to
determine material properties for use in the tire FEM.

Tire construction materials consist of several different rubbers
and reinforcement materials including polyamide, polyester
and steel.

Rubber i1s known to exhibit highly non-linear elastic behavior.

Hyper-elasticity Is Dby definition time independent, and

therefore it is suitable for use in static finite analysis.



Step procedure:
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BOUNDARY CONDITIONS - TIRE
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PRESSURE APPLIED
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MESH GENERATION
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RESULT
STRESS ANALYSIS
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REACTION FORCE V/S OUTER CURVE LENGTH
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Force
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LOAD
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FUTURE SCOPE

* |[nstead of using solid rubber tire model, tire
construction can be done by part wise
modelling.

* Different material properties may be assigned
and optimum values can be obtained.

e Research on SMART tires.



CONCLUSION

* |n static tire analysis (before starting), the load
present on a tire is that of normal load (300-
250)N.

* |[n Zero parking condition, the load on tire will
be more as along with normal load, lateral
force (opposing the turning motion) will also
come into play.
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