Cornering Analysis of Motorbike

GROUP-G

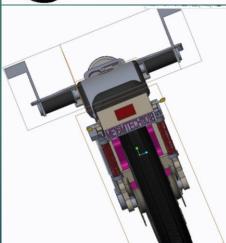
ME16MTECH11005 M Yoganandh

ME16MTECH11014 Ravi Kamani

ME16MTECH11017 Sudarshan Khandagale

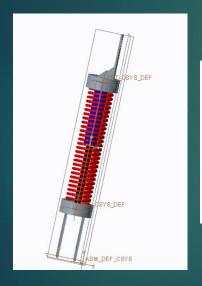
ME16MTECH11018 Troglio Rodrigues

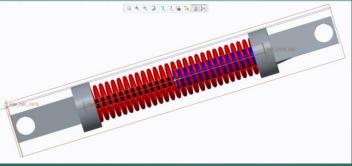
ME16MTECH11019 Chetan Ganji

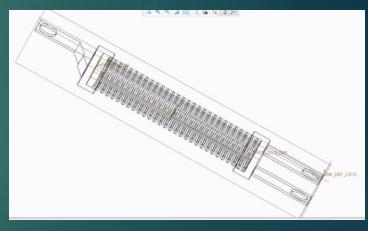

Introduction

- Two-wheelers exhibit interesting dynamic characteristics.
- ▶ They are statistically unstable but when forward speed increases the instability goes on decreasing.
- Cornering of a two-wheeler deals with interaction between gravitational force, centrifugal force and the moment applied to the handle bar along with the geometry of the two-wheeler and rider.
- Leaning the two-wheeler in to a corner and maintaining an appropriate forward speed allows the gravitational force to balance the centrifugal force leading to the control and stable cornering.

Solid model of Motorbike

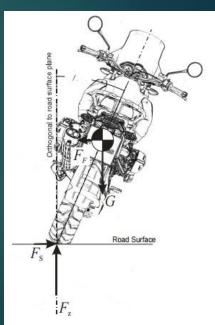






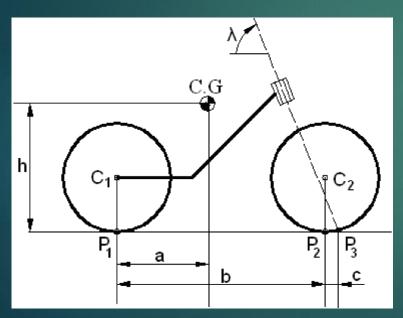
Component of Motorbike

Rear Suspension shock absorber.


Driving Stability

The most obvious difference between four- and two-wheeled vehicles is the banking while cornering. The roll angle (λ) depends mainly on the lateral acceleration

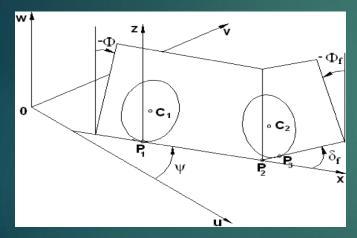
$$\lambda = \arctan \frac{F_F}{G} = \arctan \frac{\ddot{y}}{g} = \arctan \frac{v^2}{R \cdot g}$$


the centrifugal force F_F , the weight force G, lateral acceleration \ddot{y} , gravity g, cornering radius R and velocity v.

The equilibrium for the roll angle is unstable. Small perturbations generate a roll momentum that would either cause a overturn motion or a flip-over of the vehicle

Cornering of Two-wheeler without braking

A simple Two-wheeler model is used for the analysis as shown below

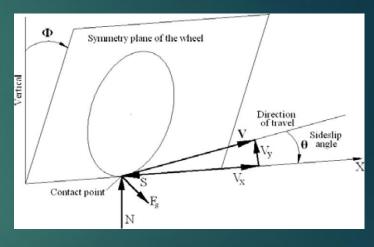


Where

- 'h' Position of C.G in plane containing rear wheel
- 'λ' is the head angle due to tilt in steer axis
- 'a' Position of C.G along X-axis
- 'b' Length of wheel base

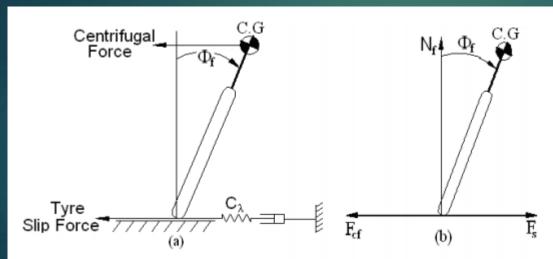
Cornering of Two-wheeler without braking

► The coordinates used to analyze the two-wheeler is shown in below figure


Where

' ϕ_f ' is the effective front fork roll angle

 ${}^{\iota}\delta_f{}^{\prime}$ is the effective front angle due to tilt in steer axis by λ


 ${}^{\iota}\psi{}^{\iota}$ indicating the orientation of rear wheel plane.

▶ The tire forces and side slip angle

Contd...

Forces acting on tire during cornering

(a) Tire model

(b) Reaction forces on front wheel

The effective front fork roll angle is given by

$$\phi_f = \phi - \delta \cos \lambda$$

Normal reaction force on front wheel excluding dynamic and centrifugal effect

$$N_f = \frac{amg}{h}$$

Effective centrifugal force on front wheel

$$F_{cf} = \frac{amv^2 \sin \lambda}{b^2} \delta$$

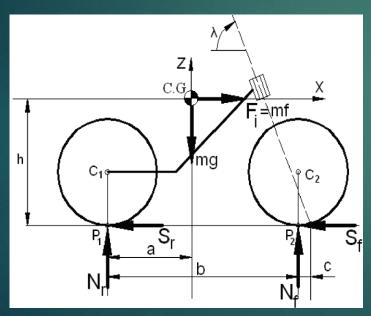
Lateral force resisting sideslip

$$F_s = C_\lambda \times \theta + C_\phi \times \phi_f$$

Contd...

Governing stability equation during without braking

$$J\ddot{\phi} + \frac{\phi}{bK_{\lambda}}\dot{\phi} + \left[K_{\nu}C_{\phi}\sin\lambda - mgh\right]\phi = \frac{D\nu}{bcK_{\lambda}}\dot{T} + \frac{K_{\nu}}{c}T - \left[K_{\nu}C_{\lambda}\sin\lambda\right]\theta \tag{1}$$


Where

$$K_{\lambda} = \frac{amv^2 \sin \lambda - b^2 C_{\phi} \cos \lambda}{b^2}$$
 , $K_{v} = \frac{m(v^2 - acg)}{bK_{\lambda}}$, $D = mah$ & $J = mh^2$

The above equation reveals that torque at the handle bar has a great influence on roll angle as well as stability of the two-wheeler.

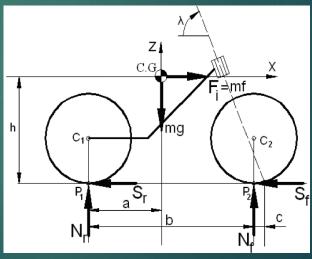
Cornering of Two-wheeler with braking

► For stability analysis of the two-wheeler during cornering with braking the model considered is shown below figure

Forces acting on the two-wheeler during braking

Where

- N_f Normal force at front wheel, N
- N_r Normal force at rear wheel, N
- F_i Inertia force due to braking
- \triangleright S_f Front braking force
- \triangleright S_r Rear braking force
- C Cornering stiffness


Cornering of Two-wheeler with braking

Forces acting on the two-wheeler during braking

Vertical reaction force due to braking on front and rear wheel

$$N_{fb} = \frac{amg}{b} + \frac{mJh}{b}$$

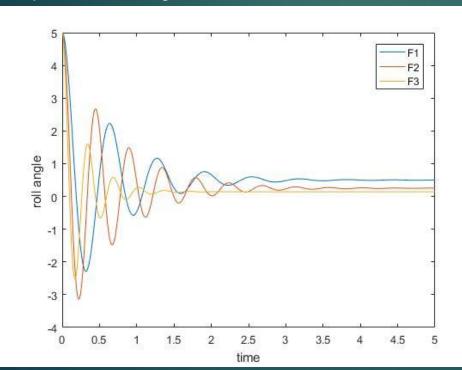
$$N_{rb} = \frac{(b-a)mg}{b} - \frac{mJh}{b}$$

Cornering of Two-wheeler with braking

Governing Stability equation during braking

$$J\ddot{\phi} + \frac{DvC_{\phi}\sin\lambda}{bK_{\lambda}}\dot{\phi} + [K_{1}C_{\phi} - mgh] \times \phi = \frac{Dv}{bcK_{\lambda}}\dot{T} + \frac{K_{1}}{c\sin\lambda}T - [K_{1}C_{\lambda}]\theta \qquad (2)$$

Where


$$K_1 = \frac{m \sin \lambda}{bK_{\lambda}} \left[v^2 h - acg - \frac{2Dav^2 \sin \lambda}{b^2 K_{\lambda}} \right] & f = \frac{F_i}{m}$$

- > Stability equation during braking derived considering deceleration due to braking and therefore, velocity as a variable with time.
- Breaking force largely affects the stability of the two-wheeler which can be controlled suitably by applying torque on the handle bar.

Thus equations (1) and (2) provide stability of the two-wheeler without braking and with braking conditions.

Simulation using Matlab

Response of roll angle with time

Two-wheeler Parameters:	Value	Unit
Mass (m)	200	kg
Length of wheel base (b)	1.54	m
Position of C.G in plane	0.6	m
containing rear wheel (h)		
Position of C.G along x-	0.513	m
axis from P ₁ (a)		
Head angle (λ)	70	Deg.
Trail (c)	0.117	m
Sideslip angle (θ)	2	Deg.

Conclusions

- We have considered a simplified two-wheeler for analyzing the stability under braking and without braking conditions.
- ▶ To balance the centrifugal force and the gravity force a two-wheeler in a turn must lean towards the centre of turn. This is essential for ensuring the stability of the two-wheeler.
- ▶ The peak amplitude is less with harder braking force, stability of the two-wheeler in a curve under such condition of hard braking may be better if proper road condition is met.

Tools & References

Tools

Creo & Mat lab

References

- PERSPECTIVES FOR MOTORCYCLE STABILITY CONTROL SYSTEMS by Patrick Seiniger, Kai Schröter Jost Gail
- Stability Analysis of a Two-wheeler during Curve Negotiation under Braking by M Ghosh, S Mukhopadhyay
- Vehicle Dynamics by Thomas D Gillespie

Thank You!!