Analysis of Vehicle - Suspension system under Vertical, Pitching & Rolling motion

Ajay Kumar (ME13B1002) Amit Kumar Chaudhary (ME13B1004) Arpit Vijay (ME13B1005) Daka Vishnu V. Reddy (ME13B1011) Prathmesh Deshmukh (ME13B1012)

Suspension

Suspension is the system of tires, tire air, springs, shock absorbers and linkages that connects a vehicle to its wheels and allows relative motion between the two.

Why suspension is required?

The suspension on a vehicle serves multiple purposes:

- It provides a stable platform from which to control the vehicle.
- It provides a way to isolate the chassis and driver from the shocking jolts that the tires experience going over anything but a glass-smooth surface.
- It provides a way to keep all the vehicle's tires in contact with an uneven surface.
- It provides damping of oscillations that rubber tires, springs and uneven surfaces naturally create.

Components of Suspension

- Tires
- Wheels
- Brakes
- Knuckles/Uprights
- Wishbones/Links
- Axles
- Steering

Knuckles/Uprights

- The upright or knuckle attaches the wheel, brake rotor, hub, brake caliper and steering arm to the vehicle.
- The upright is attached to the vehicle using the upper and lower wishbones which have ball joints or rod-ends. This allows the upright to move vertically and to rotate about the kingpin axis.

Non-Driven Wheel Upright

Wishbones/Links

- Wishbones, links and axles connect the previously mentioned upright or knuckle to the car chassis.
- The goal is to control lateral, longitudinal and vertical motion of the wheels.

Wishbone

Camber Angle & Caster Angle

Side View

Toe In/Out Angle

All suspensions seek to control the movement of the tires in three way	ys:

1. Laterally – Controlling side-to-side movement

2. Longitudinally – Controlling forward/backward movement

3. Vertically – Controlling up and down movement

Designing in Lotus

Vertical Motion

Vertical Motion

Rolling Motion

Rolling Motion

Simulation in CarSim

Specs

- C-Class hatchback 2012 OSG
- Camber angle: -2 degrees
- 150 KW Engine
- Exotic w/o ABS
- Unsprung mass 71 Kg.

Vertical Motion

Camber - Front : Baseline

Force - N Tire L1 vertical Tire R1 vertical 30000 25000 20000 15000 10000 5000 0 0.5 1.5 2.0 2.5 3.0 3.5 6.5 7.0 7.5 9.5 1.0 4.0 4.5 5.0 5.5 6.0 8.0 8.5 9.0 10.0 Time - s

Force - N 24000 Tire R2 vertical 22000 20000 18000 16000 14000 12000 10000 8000 6000 4000 2000 0 2.0 2.5 9.5 0.5 1.0 1.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 10.0 0 Time - s

Rolling Motion

Roll Angle of Sprung Masses : Baseline

Camber - Front : Baseline

Jounce - Front : Baseline

Vertical Forces - Front : Baseline

Force - N Tire L2 vertical
☐ Tire R2 vertical Time - s

Pitching Motion

Pitch Angle of Sprung Masses : Baseline Pitch, vehicle - deg Vehicle pitch 2.0 1.5 1.0 0.5 0 -0.5 -1.0 -1.5 0.5 1.5 2.0 2.5 3.0 3.5 1.0 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 Time - s

Time - s

Jounce - Front : Baseline

Force - N — Tire L1 vertical — Tire R1 vertical 9000 8500 8000 7500 7000 6500 6000 0.5 2.0 2.5 0 1.0 3.0 3.5 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 Time - s

Force - N

References

http://www.buildyourownracecar.com/race-car-suspension-basics-and-design/3/

http://en.intraxracing.nl/techniek/camber,-caster,-toe-intoe-out/

http://www.ozebiz.com.au/racetech/theory/align.html

users.wpi.edu/~sae_auto/docs/2009_baja_report.pdf

citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.42.4810&rep=rep1...pdf

Thank You.