AUTOMATIC STEERING CONTROL

Team members:

- Deepika Banpur, ME12B1006

- P.V.Sairam, ME12B1027

- Kenneth Joseph Paul, ME12B16M000004

- C.Sneha, ME12B16M000009

Points of focus:

- INTRODUCTION
- VEHICLE MODEL
- STEERING SYSTEM MODEL
- PID CONTROLLER
- MATHEMATICAL MODELLING
- ≠ RESULTS
- CONCLUSIONS
- REFERENCES

INTRODUCTION:

- Intelligent and automated guided vehicles have always gained the interest of researchers all across the globe.
- Reduction in traffic congestion and over all number of accidents in the recent past can be attributed to the progress in the development of active safety measures.
- Path guided vehicle control systems with the presence of driver commands is more realistic explanation of vehicle path tracking problems.
- Mathematical models are developed for autonomous steering controller using PID controllers.

Vehicle Model:

Steering Control System Model:

Source: <a href="http://www.intechopen.com/books/advances-in-mechatronics/integrated-control-of-vehicle-system-dynamics-theory-and-experiment&psig=AFQjCNHF_VKHdfbD8pxVUoNwKD755WngSA&ust=1460796582284373

Steering Control System Model:

Steering Control System Model:

Schematic models:

l_s: Look ahead distance,

f_{l.s}: Longitudinal and lateral forces,

 C_1 , C_2 and C_3 are controllers.

Integrated driver and control scheme

Source: Integrated driver and Active steering control for vision-based lane keeping; Riccardo, Stefano, Mariana

Controllers:

- The control design is divided into three sub-systems:
- \circ C₁: PI active front steering control system.

 $\delta_f = -K_{p1}(r-r_d) - K_{l1}a_0$; a_0 it is the additional state introduced by the dynamic control.

O C₂: PID control system.

=> Considering the yaw rate reference signal (r_d) as a controlled input, we need to integrate the additional lateral offset measure to drive the signal e_v (y_d-y_l) to zero.

7> The dynamics of road curvature (ρ) are important to design the desired yaw rate reference as it might be considered as a disturbance to lateral offset.

=> No driver action results in y_d =0 and e_y is driven to zero.

 $\delta_f = -K_{p2} e_y - K_{l2} a_2 - K_{l3} a_1 - K_d e_{yd}$; a_1 is necessary to obtain zero steady state tracking

error.

$$a_1 = e_y$$
; $a_2 = a_1$; $a_3 = -a_3/\lambda + e_y$; $e_{yd} = 1/\lambda (a_3)$; e_{yd} : lateral offset measurement

Controllers:

- The control design is divided into three sub-systems:
- C₃: PID control system.

To obtain a complete control over of the vehicle lateral dynamics when:

$$\lambda_d \neq 0$$
; Goal is achieve $e_y = 0$.

$$e_{y} = y_{d} - y_{l} = 0;$$

 $C_3 = kP_o$; K = Design Parameter (It depends on rise time, settling time

and overshoot);
$$P_o$$
 = Transfer function between r_d and y_l

=
$$(d_3S^3 + d_2S^2 + d_1S + d_0)/(S2)(-S^3 + c_2S^2 + c_1S + c_0);$$

Mathematical Modelling:

$$v_x = -v \sin(\Psi_v) + u \cos(\Psi_v);$$

$$v_y = u \sin(\Psi_v) + v \cos(\Psi_v);$$

$$y_{1a}' = v_x \sin(\Psi_R) + (v_y + x_{1a} \Psi_v') \cos(\Psi_R);$$

$$= > y_{1a}' = v + u \Psi_{vR} + x_{1a} \Psi_v';$$

$$m(v_x' - r v_y) = f_{1f} \cos\delta_f + f_{sf} \sin\delta_f + f_{1r};$$

$$m(v_y' + r v_x) = f_{1f} \sin\delta_f - f_{sf} \cos\delta_f - f_{sr};$$

$$Jr' = l_f (f_{1f} \sin\delta_f - f_{sf} \cos\delta_f) + l_r f_{sr};$$

$$(Note: 'means differential)$$

Mathematical Modelling:

$$\dot{x} = Ax + Bu + Ew \qquad c_f = B_f C_f D_f \qquad f_{si}(\alpha_i) = D \sin\{C \arctan[(1-E)B\alpha_i + E \arctan(B\alpha_i)]\}$$

$$y = Cx \qquad c_r = B_r C_r D_r \qquad \alpha_f = \frac{v_y + l_f r}{v_x} - \delta_f, \quad \alpha_r = \frac{v_y - l_r r}{v_x}$$

$$A = \begin{bmatrix} a_{11} & a_{12} & 0 & 0 \\ a_{21} & a_{22} & 0 & 0 \\ 1 & x_{la} & 0 & u \\ 0 & 1 & 0 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} b_{11} \\ b_{21} \\ 0 \\ 0 \end{bmatrix}, \quad E = \begin{bmatrix} 0 \\ 0 \\ 0 \\ -u \end{bmatrix}, \quad C = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

$$a_{11} = -(C_f + C_r) / mu$$
, $a_{12} = (l_f C_f - l_r C_r) / u - mu$
 $a_{21} = -(l_f C_f - l_r C_r) / I_z u$, $a_{22} = -(l_f^2 C_f + l_r^2 C_r) / I_z u$
 $b_{11} = C_f / m$, $b_{12} = l_f C_f / I_z$, $u = \delta$, $w = 1 / R$

Vehicle Parameters for linear model:

 $C_f = 2.864e+5 (N/rad); C_r = 1.948e+5 (N/rad)$

RESULTS:

RESULTS:

RESULTS:

Vehicle path (Without Controller)

Conclusions:

- There are a lot of fluctuations in the steering angle when we are not using PI controller. But with the introduction of PI controller it became smooth.
- In the absence of the controller, actual velocity falls way below the target velocity
- ightharpoonup By changing the K_I and K_P parameters, the error in the speed is reduced

References:

- Integrated Driver and Active Steering Control for Vision-Based Lane Keeping Riccardo Marino, Stefano Scalzi1, Mariana Netto, December 2011.
- Marino, Riccardo, Stefano Scalzi, and Mariana Netto. "Integrated driver and active steering control for vision-based lane keeping." European journal of control 18.5 (2012): 473-484.

Thank you