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on quantifying analyticall e Vigcous losses—the squeeze film damping and drag
force damping—that li Wet quality factor of a beam resonator, vibrating in its

flexural fundame @%Zle ith the surrounding fluid as air at atmospheric pressure.
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tural lossg1 1d acefstic radiation losses. The combined viscous losses agree well with
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max um/uality factor and the ratio of maximum beam width to the squeeze film

air gets thickness.
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Publishihg INTRODUCTION

The sensitivity of flexural nanobeam resonators to changes in various physical quantities
such as temperature, pressure, and mass (m),l’3 is most often expressed in terms of the
change in resonant frequency (f). The sensitivity to the physic?/quantities under assay

le

(0m/m) varies as (0 f/f) or inversely as the quality factor (@Q). Wh () can be improved

4,5

by operating the devices in vacuum™°, sensing is often most practically carried out when

the device operates in air under ambient conditions. These M e influenced by fluid-

structure interaction losses (squeeze film damping and Q\Qx@ amping) that limit the

() at ambient pressure. Studies reveal that one or the other of.these damping mechanisms

dominates. Reliably achieving higher @) requiresta bétter )mderstanding of the damping
;ﬁ.tudé)of the damping.

The quality factor or Q-factor is a physi%le"c'er that quantifies the ratio of energy
0

mechanisms and the role of geometry on the ma

stored (or maximum kinetic energy of th‘e\Q r), to the energy dissipated, per cycle

of oscillation of the resonator. The net%‘%‘l’on is obtained by summing the dominant
a

sources of dissipation, namely, squeez ?ﬁ)n.dg ping (sq), drag force damping (dr), acoustic
radiation damping (ac), thermoe \\\ mping (ted), and clamping losses (cl) denoted by

their corresponding subscript& e net QQ in terms of corresponding Q’s is given by®

Onet = Qi + Q' + Qo + Qe + Q™ (1)

The quality fa€tor“agsocifited with the structural losses such as thermoelastic losses’

and clamping 4 sses\Qe ound to be of the order of O(10%). Hence there is a marginal
contributio bructural losses to the measured quality factor corresponding to various
beam widths! For“doubly clamped beams, the quality factor associated with the acoustic
losses? is of th féer of 0(10%) and also found to contribute marginally to the experimentally

as\l&wl lity factors, rendering the viscous losses in the form of drag and squeeze film
tobe déminant.

Vk& ala et al.l investigated the variation in the @ of a microscale cantilever beam with

th by modeling the drag force on the vibrating beam with an equivalent vibrating sphere
model. They computed the drag force from an effective spherical radius and compared the
computed results with measured values. However, the dependency on width was found

to be insignificant. Xia and Li'! studied the effects of air drag on a cantilever operating in
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Publishi'riigf srent modes under ambient conditions. They used the dish-string model for the air drag
and compared the calculated values with numerical and experimental results. Verbridge et
al.*? found that the measured quality factor of doubly clamped beam resonators, operated
in air in their fundamental out-of-plane mode vibration, scale as the ratio of volume to
surface area of the resonator. For small widths, as the beam ?/dth is increased, the @)

d.svic and the stationary

1

also increases. Depending on the size of the air gap between t

um in () is attained at a

substrate (the air in the gap constitutes the squeeze film), a \
u

1a
particular width, and a further increase in a device widt Itsun areduced () due to the

increase in squeeze film damping. For larger air gaps;the width corresponding to
—
the highest () also increases. However, despite'the msa rement of the variation
of quality factor with beam width, the idtl::‘ﬁca 1
d

mechanism as a function of the beam &Xﬁx‘;s uncertain. To understand the

of the dominant damping

variation in quality factor of a cantilever bea‘mﬁ; xed plate, the theoretical damping
force needs to be quantified in te méﬁi beam length, width, and the air-gap
thickness. Bullard et al.'® and Sadar Mhave presented dynamic similarity laws and

generalized scaling laws, respectively, te capture drag forces due to the vibration of cantilever

beam with and without a nearby te. While Ramanathan et al.!> have presented a

1D model under continuum an MOlecular regime, Lissandrello et al.!® have presented
a model which requiresfthe«gcomputation of the fitting parameters from experimental or
numerical studies. T mof% damping effect of an AFM cantilever beam near the rigid
surface under diffzf% Legimes and air-gap thickness, Drezet et al.!” and Honig et al.'®,
Bowles and Ducker¥ have*introduced a slip length to be used on both the surfaces. They
found that t &gnitu e of slip also depended on the nature of the fluid-solid interface.

While HQ:? 18 and Bowles and Ducker!® have presented their studies based on a
1D

modified~ o(ﬂel of drag forces incorporating slip lengths and air-gap thickness, Drezet

et al.' 1ave§3resented a 2D model based on the lubrication theory by introducing a slip

-—
length OS both the surfaces of a cantilever under uniform or rigid motion. The success of

~tlgse dels depends on finding the correct slip lengths and their scaling. Although these

1 ed\studies have presented different models to compute drag forces near and away from
a fixed plate with rarefaction effects, most of them are based on 1D model except the one
proposed by Drezet et al.!”. Moreover, none of them have discussed the influence of width

on the combined effect of drag forces and squeeze film on the quality factor necessary to
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Publishialfow the computation of Quax corresponding to a particular beam width. Consequently,

they cannot be used in their present form to capture both the effects together.

In the present study, we identify and quantify the dominant dissipative mechanisms that
depend on the beam width of a nanomechanical fixed-fixed beam. Our study not only solves
the long standing problem concerning the uncertainty of vz{ n drag effects dom-
inate over squeeze-film damping (and vice-versa) but al }Egdesign guidelines
to achieve optimum quality factor associated with the fundasiental mode of such resonators
operated in air. We find that the viscous losses (squeez lX2§1ping and drag force
losses) are the dominant dissipative mechanisms that.co ibute in different proportions
with varying beam widths. To identify the correct madels, &se compare different drag force
and squeeze film models individually with experi \ental restlts. Later, we use the optimized
drag and squeeze film models to capture the ¢ bin(ﬂlﬂects at various beam widths and
air-gap thicknesses that agrees well with Kﬁ)asu ments of Verbridge et al.'?. Using the

N

optimized models, we analyze the vari io.‘n\laleum quality factor with different width
to air-gap ratio and length to wid .%tio spectively. Finally, we propose an empirical

model to capture such variations\\

II. VISCOUS Los@ THE DOUBLY CLAMPED BEAM
£
nfluencé

To study tl%i of beam width and air-gap thickness of a fixed-fixed
beam on fl 'dD(inng, we take the dimensions and properties of the beam
from Verbr et al.'> as shown in Fig. 1. The beam is fabricated with silicon

.

nitride ntaterial with Young’s modulus, £ = 200 GPa, Poisson ratio, ¥ = 0.23 and mass

0 kg/m®. The nominal and effective beam length including the undercut

density, ps
di of/1.5 pm are taken as ¢ = 11 pym and a. = 12.5 pum, respectively. To compute
flaid daﬁ}ping, we take the effective length of the beam. Each beam has a thickness of

Wl

the bottom substrate by the air-gap thicknesses of hy = 250 nm, 460 nm, 660 nm, and 750

n

nm and varying width, b, from 55 nm to 1910 nm. The beams are separated from

nm, respectively. The measured values of in-vacuo fundamental frequencies are taken as
13-14 MHz. However, the theoretical frequency value subjected to residual stress of o, can

be obtained based on approximate modeshape ¢(z) = (1 — cos(2rx/a))/2 from the formula

4
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FIG. 1. (a) SEM images showing the top vieV\O\N:@L 1s with different width (1.5 pm and 50 nm
1

wide, respectively); (b) Schematic of a do@i&qped beam (front view), with length, a = 11 pm,
us

varying width, b, thickness, dy = 140 va ed above the thin air film of thickness hg.
~

%/12)

pa(bdo) > $+ @ <Z_) % (2)

For the given dimensio %\aterial properties, we find the frequency of 13 MHz corre-
res

based on Rayleigh method as®2°

sponding to a residaial s} 140 MPa. Since the beam vibrates in air, we take the air
viscosity, @ = 1 10 6//m2, density, p; = 1.2 kg/m?, pressure, P, = 1.013x10° N/m?
and tempera 00 K At ambient temperature and pressure, the speed of sound is found
as cg = 343.2 the mean molecular speed uy, = 468.23 m/s, the mean free path of air as
A= 67r‘1_ril, {d t}ee oundary layer thickness § = \/W = 611 nm. For the first mode

8f fixed-fixed beam, the effective mass m. = 0.375psa.bdy, and the effective
2

5 “Flow Characterization

To quantify the viscous losses and predict the size effects on the measured quality factor of
doubly clamped beams operated in their fundamental mode at identical frequencies but with

varying beam widths, we compute various non-dimensional numbers such as the Knudsen
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Publishimgber, Reynolds number, aspect ratio, etc. For a given beam length a and varying air-gap
thickness hy and beam width b, the Knudsen numbers and the Reynolds numbers based on

the different characteristics length scale can be computed as®15:21:22

e Kn, = hioz It is used to define the degree of rarefaction in squeeze film damping. For
the airgap thickness hg = 250nm, 460 nm, 660nm, and 7501&1{,e e Knudsen number is
found to be 0.27 (Transition), 0.14 (Transition), 0.10 (Sli @%Shp). Therefore,
the effect of rarefaction needs to be considered in sque‘ee\ force computation. It

2‘3}“‘

e Kn, = %: It is used to define degree of rarefactign when the beam is far away from the
fixed plate. For beam width of b = 50 nmfto 2 1, varies from 1.34 (transition
flow) to 0.03 (slip flow). The effect of rat%oi?eeds to be considered in drag force

computation. \
e Kns = % = ywr: For § = 6(\‘&;(1, we get Kng = 0.109 < 1. Since, the

Weissenberg number Wi=wt '1*%1@ w can be assumed to be quasisteady flow.
N
e Rey = "fﬂﬂ — 2. For th&\l\sg{ thickness h =250 nm, 460 nm, 660 nm, and 750

nm, Re, varies from 0. 13..2.3, 3 for a frequency of 13 MHz. The values show

that the local inerti ect is Tmportant for large air-gap. Alternatively, the ratio
% can also be used to characterize the flow as being in the static regime
the ;l

can be captured by computing the effective viscosi

(ho >>0) or 1
damping?

g = 25%2 : For a beam width of b = 50 nm, 420 nm 590nm, 1000 nm, 2000
off szr'e from 0.014, 1.01, 2.01, 5.76, to 23. For beam widths greater than 400

namic regime (hg =~ §) in the case of the squeeze film

nm

H‘I.l-: ths ertial effect in drag force become significant. As in the previous case,

~.the ratio % signifies the static regime (b >> §) and the dynamic regime for
(b%ﬁ ) in the case of drag forces.

e Re. = @ : For small oscillations, 0z ~ Inm, Re, is negligibly small. Consequently,

the convective inertia term can be neglected.

The computation of these different Knudsen and the Reynolds numbers show

that rarefaction and inertial effects are important in computing damping due

6
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Publishitg squeeze film and drag forces. Since, the ratio, ho/b, is greater than 0.1, the ef-
fect associated with 3D flow should also be considered in the formulations of drag force
and damping. Now, we describe different models of drag and squeeze film damping under

different operating conditions.

B. Different Analytical Models

J/’\

There exist several different models to compute.drag, forees with or without

nearby fixed plate and squeeze film damping. We ;Dne@)me important models

and their assumptions below. QS

1. Drag Force Models
L -

In this section, we describe three N t models to compute drag forces

under different operating conditio%&beam of width b, thickness d;, air-gap

ho, operating frequency w, etc. \
N

o Qq = 28w where, yar isgw force coefficient per unit length. The generalized

Yd1
expression of Stokes dragforee coefficient (74 per unit length) using the so-called

“sphere” model?}2%2 can beé'reduced to v4 = 8uuK, for a thin disk. Therefore, the

lity factor for the slender beam can be written as Qg = ’)E;Zj—dlg:’.

drag force based

K, is the 71
rarefactiod effec

ho. ﬁﬂ*

where vz = Cy6mu.R. is the Stokes drag force coefficient, m. is

fattor, introduced to capture all of the terms for the shape correction,

tial effect, etc. The factor K is independent of air-gap thickness

< Cobmp R
he effectige mass of the beam, p, = pratn A is the effective viscosity when A < A,
L Uthe— )/W R, = 27.058, and M, = 28.97 g/mole. The variation of pressure
ang temperature can be incorporated in the density as psy = \/W However, the
S \rarefaction effect can be captured through the mean-free path A = Mf\/m
which is inversely proportional to pressure. The effective radius is obtained from R, =

ach

Cry/ %, where Cg is the correction in effective radius. This model is independent

of air-gap thickness and is valid under low operating frequency such that R, << 9,

where, 6 = \/2p./ppow*H?.
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Publishing » Qus = sk rTsy: Where a3 = Co6mpeRe(1 + R, /) is the drag force coefficient,
0 = \/W is the boundary layer thickness and other parameters are same as
the previous model QQg2. Like the previous model, this model is also independent of
air-gap thickness. However, it is valid for a high operating frequency, i.e., R, > d,.
This model can be useful when the characteristic length sca e beam width, is of

same order as the boundary layer thickness'6

® Qa1 =", where, yu = CybmucR2/(hofy), where f 1 + e 5 )|, m and

7o are the constants based on the strength of Kn; = 5 = R /e, respectlvely
Unlike the previous models, this model is depenfden ir- gap thickness'¢

On comparing different models, we found le, 2, and ()43 are independent

of air-gap thickness, and (), is depende on h air-gap thickness. While the
inertial effect is captured directly by, é},a\n 14, the other models capture the
effect through fitting parameters

\\

2. Squeeze-film Damping que\

In this section, we dlscu\ﬁm important models to compute squeeze film

damping. \

e Qg = 51 hére, = Ypr + Yap is the damping coefficient from forces due to

pressure tres L/ he wall, v, and 74, are given by

e7rnb/(2a) e—ﬂnb/(?a) :|

8A ab Z 1 1 2a —
« S~ TL4 anb e™b/a _ o—mnb/a
2
Yy = —Aab [hQ - bitho p2 +boh0)} , (4)
we

+ b1+ ho
2
A, = £ 7 (5)
by and by are slip lengths at the lower and upper surface facing each other. Equa-

L=
1 2bthg ) p2 o (_2bith 5
Pf K—_ + 2bo+1bl+(i]zo) ho + <b0+lbl+(;10> bOhO]

tions (3), (4), and (5) are derived for rigid motion of the plate by solving Reynolds

8
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equation with ambient pressure boundary conditions on all the four sides of a rectan-

17 This model is obtained for incompressible flow, and hence,

gular domain
it is valid for low operating frequencies. It captures the rarefaction effect

through the slip lengths at the boundaries.

To consider the effect of flexural motion of a fixed-fixed bedm \% ing near a fixed

plate, the squeeze film damping model under ambient SS e condition is obtained

by solving the Reynolds equation with zero-pressure CO t free boundaries and
a no-flow condition at the fixed-boundaries. olds quation is solved with
the assumptions®” under which the flow is asglinied towbe ( ) two dimensional due

to the pressure gradient along the two pla Ctlohb and (b) isothermal and vis-
ELug'h)p o P, where, P is the pressure.

This model is accurate for hg/b < 0gl. . Hg#b > 0.1, the 3D flow effect can be
approximately modeled by writing \@ e dimension begy = b + £hg, where, &

is a correction factor assomated {h bege. The quality factor from the squeeze film

cous with weak compressibility provide

losses of a fixed-fixed beam ca uted from the expression obtained by Zhang
et al?", Qg = —

squeeze damping numb\k(ctl ely. We write the exact mode shape of the fixed-

1 msqa

and Csqa are the squeeze inertia number and the

fixed beam as?%27 = cosh(ax/a) — cos(ax/a) + y[sinh(azx/a) —sin(azx/a)], where

[cosh(a)—cos(

== is a non-dimensional geometric factor, a is the beam length
arameter. The parameter « is obtained by solving the fre-
quency e

expressi eeze inertia and the squeeze damping numbers are written as,

> 2304a 1
a/)sdoh5 Z Z [(m27r2—|—n2 2ﬁ2) +02]

m=even n=odd

o

115242
+ Z n2(7’L47T4/84—|—0'2)

I

e}

c . Z Z 1152a ( —i—nzﬂ'zﬂz)
V30 Ea2d2h3 n?n? [(m?n? 4 n?m2[32)? + o?]

m=even n—=odd

= 576023
+ Z (7147T454—|—0'2)

n=odd
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Publishing| where, o, is given by a, = S2) + yocghigloe _ br-a) _ sponte) _ locenlaspm) _

7%, p=0and 1,3,5,...,m. A ready evaluation of the squeeze film quality

factor (Qs2), valid for the squeeze number, o = % < 1000 and aspect ratio,
allp

B = a/b> 10 is obtained by using the expression for the squeeze inertia and damping

numbers written as?’, mg,, = 1.1977 ey ber Csqa = 0.152 G195y Por the funda-

Papsdohl’ h3d2
mental mode of the resonator, the constants a = 4.73, 1 The constant
ap is obtained by setting p to zero in the expression ( = -0.983). For
the air gap thickness set to the experimental value m, 660 nm, 460 nm and

250 nm, respectively, the corresponding compu ed e?E\number o, is 32, 39, 66,
and 132. To capture the rarefaction effect, we ifiyoke tlse effective viscosity model?*?4,

and use fleg = where (), is the no Jimen al relative flow rate given by,

o
Qe = 1+3%x0.01807 x \/7/D+6 x 1. 35% ‘)7468 with D = . For the range

of air gaps (250 nm—750 nm COHSIR e present study, the ﬂUId flow regime
varies from the transition flow ow. Here, p.g is obtained for gaseous slip

flow under ambient pressure erature conditions. However, the variation in
pressure and temperature thewroﬁmding air can be captured while computing the
mean free path or velo tyxsw7 . The current formulation of the slip velocity is
for gaseous flow?*, hOW(%%ppropriate slip model can be selected for other fluids

such as liquids or 1

C. Comparl 1t e perlmental results

In this sec We compare the results from different models with experimental results

Vierbridge et al'?. In all the cases, we take effective length of the beam as
igures 2(a) and (b) illustrate that all drag models fail to match
experimental results for sufficiently large b. For small b, the match between

del é’ld experimental data appears best for models Q;; and Q4 (in Fig.2(b)).
Wil\e he models 41, Q4, and ()43 are independent of air-gap thickness, )y is
a‘function of hy. Moreover, the model ();; captures drag based on the thin disc
model, and models ();» and ()43 capture the drag based on the “sphere” model
without and with inertial effects. Therefore, to fit the damping due to drag

force in the range of smaller values of beam width, we choose a specific thin disc

10
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FIG. 2. Compari?h%g/force based quality factor computed from (a) Q1 (K5 = 1), Qao
Tywand

(Cy =1and Cp=

a3 (C3 =1 and Cr = 1) with experimental results for hg = 750 nm,

and (b) Qg4 Wi Im(periments for hg = 250, 460, 660, and 750 nm, respectively. Comparison of
squeeze-filln based quality factors using (c) Qs1 ( Cs1 = 0.155) at different slip lengths by and by,
and (d) Qs a iﬁérent effective lengths with experimental results for hg = 750 nm.

&

del (gdl, and a generalized “sphere” model 43 for further analysis.
$RHI arly, Figures 2(c) and (d) show the comparison of squeeze film models

and (),, with experiments. Figures show that both the models fail to match
with experiments for sufficiently small width. However, both require fitting pa-

rameters to match the experimental results for larger width. While (),; requires

two fitting parameters, namely, slip length and scaling constant, ()., requires

11
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FIG. 3. (a) Comparison of combined quality fa% d
m )

rag and squeeze film using Q43(C3 = 0.9
and Cr = 0.75) and Qs2(bp = 10nm and by =

Q43(C3 = 0.9 and Cr = 0.75) and @ (beﬁm.’?ho) with experiments for hy = 750nm; (b)

dl(Keﬁ‘ = 05) and QSQ (beﬁ‘ =b + 3.8h0),

Comparison of theoretically computed tieal results using Q1 (Keg = 0.5) and Qs (begg =
b+ &hg, where € = 3.2, 3.8, 4.1, 3.\br\h0 = 250nm, 460nm, 660nm and 750nm, respectively)
with experimental results at diﬁerMap thickness.

only one fitting p ag;\b i.e., effective width. Moreover, (), is valid for an
£
u

incompressible only while the validity of ();» can be extended to fluid with

low compressibili

To compare the combined effect of drag and squeeze film damping, we take different
combinatignsfof drag models, Q4 and g3, and squeeze film models, Q4 and Q4 and
compfite the quality factor using eqn. (1). Figure 3(a) shows the comparison of Qe
uted with combinations Qu3(C3 = 0.9 and Cg = 0.75) and Q4 (by = 10nm and b; =
10um), Qi (Keg = 0.5), and Qs (bt = b+ 3.8h9), Qus(Cs = 0.9 and Cr = 0.75) and Qs

\be ~ + 1.7hg) with experimental results for hy = 750nm. Although all the combinations

h different fitting parameters approximate the measured results nearly equally well, we
use the combination based on Q41 and () for further analysis, as ()s» is more general
than (). Using Qq; with Ko = 0.5 and Qg with bgg = b+ &hg, we find the fitting
parameter £ = 3.2, 3.8, 4.1 and 3.8 corresponding to hy =250 nm, 460 nm, 660 nm and
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Publishiﬁ"g] nm for the closest fits with experimental results as shown in Fig. 3(b). The fits to the
squeeze film quality factor, (Qs2 exhibit a monotonic increase in the squeeze film losses with
increase in the beam widths. The pressure applied by the fluid on to the plate rises with
an increase in the beam width, resulting in a decrease in Q)yo for a fixed air gap thickness.
As the air-gap thickness decreases, (5o exhibits a steeper descen%rith Qs o (1/b)? for a
given air-gap thickness over a large range of beam widths (fr to 300 nm). The
theoretical fits match well with experimental results. The nexted quality factor, Qpet,

[

has a dominant contribution from squeeze film losses at hi idths, while the drag

force damping computed using ()4;; dominates in slender

Finally, the net computed quality factor can be found frem ;elt =Qn + Q511> which is
dominated by viscous losses. The calculated Q :fcorroborates the experimental results, and
is found to have a maximum at a characteristiGbeam Lviﬁth, at which neither of the viscous
dissipation mechanisms dominates, resultin%timized high-() resonator geometry for
a chosen air gap thickness. It is seen f m}g 3(b) that the maximum value of Q¢ shifts
to higher beam width with larger aip gap thickness. We find that the drag force mechanism
(Qa1) provides larger energy loss for s%e
dominates for larger values of b/ h(&%ﬁ\ the range, 0.45 < b/hg < 1 (the crossover regime

shown in Fig. 3(b)), both mec\@n& provide comparable damping. To further quantify

the relative dominance eze film damping over drag dissipation in the next section, we
take b.g = b+ 3.5hy. )

FINI’I{\ E ECTS FROM THE DOUBLY CLAMPED BEAM

rwvalues of b/hg ratio, and the squeeze film losses

In thisfsectiony, we extend the present model to predict the variation of Q.. with b if
the ai 1ckp{ess as well as length were varied beyond the values explored in the study
by Ve rldg et al.'?. 'We have used Qg with fitting coefficient K. = 0.5 and Q,y with
bl = b ho to compute Q¢ to analyze the influence of air-gap thickness hy and beam

len a‘on Qnax and by, respectively, as follows:

N\

o [ffect of air-gap thickness: Figure 4(a) shows the variation of Qe with beam width, b,
in which Qax is found to saturate at higher hy and remains constant with b. For larger
airgaps, bnax does not attain a maximum but increases slowly with beam width. Thus

squeeze film losses (dominant for large widths) decrease as the height hg increases?”.
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FIG. 4. (a) Variation in the net quality fa&\i@ d from Qg (Keg = 0.5) and Qs (b =

b+ 3.5ho with beam width, b, for Varlous($cknesses The black dots mark the optimum
ive

beam width by, to achieve Quax fo ir-gap thickness, hg; (b) bmax varies with air-
gap thickness, hg as bypax = 0.55 +80. 6 ; (¢) The maximum quality factor, Qmax, varies
exponentially with the aspect &ux 0; (the coefficients corresponding to curve fit for 0.5
< r < 0.95, are a; = 1.288 x 108, = -24.62, ¢c; = 141.5, d; = -1.755, and the corresponding
coefficients for the aspectiratio, min the range 0.95 < r < 2, are ag = 77.24, by = -1.823, and co =
12.87, respectively. © parantegers for simulation are: aeg = 12.5 um, beg = b+ 3.5h¢ pm, dy =
140 nm, and K 5). \ériation of Qmax With beam width b for different lengths a, and the

correspondin a?ljtion (e) 8= a/bmax With 7 = byax/ho and (f) Quax and 5 = a/byax.

Us the expressions for msq, and c¢ya, the expression for the net quality factor can
e used te/find the maximum value of the quality factor (Qmax) and the corresponding

L value of the optimum beam width (by.x). For a range of air gap thicknesses hg, the

coﬁesponding width by.x can be obtained from b,,., = 0.5559h¢ + 80.66 or b“% =
\ G 55950 + 0.00645 for 50 nm < hy < 1.5 pum as shown in Fig. 4(b). The relation
between Quax and r = byay/ho are shown in Fig. 4(c) and are found as a;e”” + ¢;e®”
for 0.5 < r < 0.95 and ase®” + ¢, for 0.95 < r < 2. Here, a; = 1.288 x 108, b; =
-24.62, ¢c; = 141.5, d; = -1.755, ay = 77.24, by = -1.823, and ¢y = 12.87. It is noticed

that two sources of dissipation influence the damping behavior corresponding to Qax
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Publishing in the range of 0.5 < r < 0.95, whereas, only squeeze film dominates the damping

behavior in the range of 0.95 < r < 2.

o [ffect of beam length: Similarly, Figure 4(d) shows the variation of Qe with b for
different beam lengths when the air-gap thickness is maintainéd at hg = 500 nm and

variation in frequency is considered using Eqn. (2). As t am length increases,

bmax tends to a constant value, while ).« decreases as 1cally to 20 for a given

air-gap thickness hy = 500 nm. Fig. 4(e) shows the %\% of f = a/bynax and
T = bmax/ho. For large beam length, optimum value o ‘K max/ o can be taken in

the range of 0.6 to 0.7. The linear and expo efl?ial a roximations of f = a/byax

exponentially with 5 = a/bpax

and 7 = byay/ho can also be found as 3 80 and B = 75e30—07) _ 33,
respectively. Figure 4(f) also shows that Liec?aases

rély dependent on the beam width to gap

as Qmax = 600e7%18 418, As the beam length {ficreases beyond a certain value, most
of the damping is due to 1-D flow an XLL

ratio. Under these conditions, 1— wodelscan be used to compute damping forces.

The empirical fits, which serv ar 1p¥0 achieve a high-@) structure for various ranges
of the aspect ratios (5 and r) g\ be useful in designing high performance devices.
Finally, we state that the prese stu y can be of significance in understanding the fluid
damping in a multidisci li%rea. Although the present formulation is suited for gaseous
flow, the fluid damping in figuid can be obtained by suitably modifying the slip condition

at the boundary?( £

IV. CONCLEUSIONS
/

Our centralMiiterest in the present study was to identify the dominant viscous losses and
quantifysghe associated quality factors for a range of beam widths. Our findings match well
W the&experimental results. The present model provides insight into finite size effects and

?ﬁﬂds\ an optimized doubly clamped geometry to achieve a high-() beam resonator. We have

ntified a range for the aspect ratio (b/hg), at which the two viscous losses compete with
each other. We have also found the limiting cases of aspect ratios for a fixed length of the
beam at which only the squeeze film damping or the drag force damping alone contributes

to the net quality factor. The present model is applicable as long as the doubly clamped
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Publishihgam geometry is so choosen to be within the limits of the thin beam theory. For thick

beams, the search for optimum-Q) requires a separate detailed study.
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