QUIZ - 2, IIT HYDERABAD

ME5010 - Mathematical Methods for Engineers

Maximum Marks - 30

Date: 13/08/2014

Time duration: 1 hours

Instructions:

i) Mobile is not allowed in the exam.

ii) Only calculator is allowed.

1. For a vector \vec{A} of components (x_{1}, x_{2}, x_{3}) along the unit basis vectors ($\hat{e}_{1}, \widehat{\hat{e}_{2}}, \hat{e}_{3}$), write the components of \vec{A}
(a) Along a transformed co-ordinates $\left(q_{1}, q_{2}, q_{3}\right)$ having unit vectors $\left(\hat{e}^{\prime}{ }_{1}, \widehat{\hat{e}^{\prime}}{ }_{2}, \hat{e}^{\prime}{ }_{3}\right)$ using $x-q$ relationship.
(b) In terms of the reciprocal basis, ($\left.\hat{e}^{1}, \widehat{\hat{e}^{2}}, \hat{e}^{3}\right)$. Also write the $\left(\hat{e}^{1}, \hat{e}^{2}, \hat{e}^{3}\right)$ in terms of ($\hat{e}_{1}, \widehat{\hat{e}_{2}}, \hat{e}_{3}$).
(c) Along the contravariant $\left(\hat{e}_{1}, \widehat{\hat{e}_{2}}, \hat{e}_{3}\right)$ and covariant $\left(\hat{e}^{1}, \hat{e}^{2}, \hat{e}^{3}\right)$ systems, respectively.

Also, obtain the relationship between contravariant and covariant components of vector \vec{A} in terms of the components of metric tensor G.
(Total Marks: $3+3+4=10$)
2. If $\left(\hat{e}_{1}, \hat{e}_{2}\right)$ is the basis vector of the Cartesian co-ordinate system $\mathrm{P}\left(x_{1}, x_{2}\right)$ then do the following
(a) Find the unit vector $\left(\hat{e}_{r}, \hat{e}_{\theta}\right)$ in polar co-ordinate system (r, θ).
(b) Find the Jacobian, J , of the transformation $\left(x_{1}, x_{2}\right)$ to (r, θ).
(c) Find the metric tensor G of the transformation.
(d) Using G, prove that (r, θ) co-ordinate system is orthogonal and then obtain the metric coefficients $\left(h, h_{2}\right)$.
(e) Find the reciprocal basis $\left(\hat{e}^{r}, \hat{e}^{\theta}\right)$ of the polar co-ordinate system (r, θ).
(f) Obtain the co-variant and contravariant and co-variant components of the point P in terms of polar co-ordinates. (Total Marks: $2+2+2+2+2+4=14)$
3. For the co-ordinate transformation from $\left(x_{1}, x_{2}\right)$ to (r, θ).
(a)Write the differential arc length $d s$ in terms of ($d x_{1}, d x_{2}$) and ($\mathrm{d} r, d \theta$), respectively, using the metric tensor G .
(b) Using the formula $d A=\frac{\partial \vec{r}}{\partial q_{1}} \times \frac{\partial \vec{r}}{\partial q_{2}} \mathrm{~d} q_{1} \mathrm{~d} q_{2}$, where $\vec{r}=x_{1} \hat{e}_{1}+x_{2} \hat{e}_{2}$ and $\left(q_{1}, q_{2}\right)$ is the transformed co-ordinate system, obtain the expressions of differential area element $d A$ in Cartesian as well as polar co-ordinates, respectively.
(Total Marks: $2+4=6$)

Solutian - Quiz 2

Mathenaties Matheds.
(1) $\epsilon \vec{A}=x_{1} \hat{e}_{1}+x_{2} \hat{e}_{1}+x_{1} \hat{z}_{3}$
a) $\left(a_{1}, v_{1}, v_{3}\right) \longrightarrow\left(\hat{\theta}_{1}^{\prime}, \hat{a}_{2}^{\prime}, \hat{\theta}_{3}^{\prime}\right)$
b) If $\left(\hat{e}_{1}^{1}, \hat{e}_{2}, \hat{e}_{3}\right)$ ave rociprosel basis of voctori $\left(\hat{b}, \hat{e}_{2}, \hat{e}_{3}\right)$
c) Contravaviont bae voctors $\left(\hat{e}_{1}, \hat{e}_{2}, \hat{e}_{1}\right)$ and

Covasiant bace vectors ($\hat{e}_{!}, \hat{e}^{2}, \hat{e}^{3}$)

$$
0-\vec{A}=A^{\prime} \hat{e}_{1}+A^{2} \hat{e}_{2}+A^{3} \hat{e}_{3} \Rightarrow\left(A^{\prime}, A^{2}, A^{3}\right) \text { ave undravariant Geotro } \hat{A}_{x}
$$

$$
\text { (1)- }-\vec{A}=A_{1} \hat{e}_{1}^{1}+A_{2} \hat{e}^{2}+A_{3} \hat{e}^{3} \Rightarrow\left(A_{1}, A_{2}, A_{1}\right) \text { ave coraminct aropowent }
$$

$$
\vec{A}^{\prime} \cdot e^{\prime}=A^{\prime} \hat{C}_{1}^{1} \cdot \hat{e}_{1}+A^{2} \hat{e}_{1}^{t} \cdot \hat{e}_{2}+A^{3} \hat{e}^{\prime} \cdot \hat{e}_{3} \quad g_{i j}=e_{i} \cdot e_{3}
$$

$$
\begin{aligned}
& A \cdot e^{i} A^{i} \cdot e_{1} \\
& A^{\prime}=\vec{A}^{\prime} \cdot e^{\prime}: A^{2}=e^{2}, A^{3}=\vec{A}^{3} \Rightarrow A^{3}=A^{i}=\hat{e}^{i} \cdot e_{i}^{i} \\
& \vec{A}=A^{i} \hat{e}_{i} \Rightarrow \vec{A}^{i} \cdot e_{j}=A^{i} e_{i j} \cdot e_{j}=e^{i} \cdot e_{i j}^{j}
\end{aligned}
$$

$$
\begin{aligned}
& \vec{A}=A^{i} \hat{e}_{i} \Rightarrow \vec{A} \cdot e_{j}=A e_{i} \cdot e_{j}=A_{i j} \\
& \vec{A}=A_{i} \hat{e}^{i} \Rightarrow \vec{A} \cdot e^{j}=A_{i} \hat{e}^{i} \cdot \hat{e}^{j}=A_{i} g^{i j}
\end{aligned} \quad g_{j}^{i}=e^{i} \cdot e_{j}=\left\{\begin{array}{l}
1 i j \\
0 i \neq j
\end{array}\right.
$$

$$
\vec{A} \cdot e_{j}=A_{j}=A^{i} g_{i j} \quad A^{j}=A_{i} j^{i j}
$$

$$
\begin{aligned}
& \vec{A}=\left(\vec{A} \cdot \vec{e}^{\prime}\right) \hat{e}_{1}+\left(\vec{A} \cdot \vec{e}^{2}\right) \hat{e}_{2}+\left(\vec{A} \cdot \vec{e}^{3}\right) \vec{e}_{3} \\
& \hat{e}^{\prime}=\frac{\hat{e}_{2}+\vec{e}_{3}}{\hat{e}_{1} \cdot\left(\hat{e}_{2}+\hat{e}_{3}\right)} ; \vec{e}^{2}=\frac{\vec{e}_{3}+\vec{e}_{1}}{\hat{e}_{2} \cdot\left(\hat{e}_{3}+\hat{e}_{1}\right)}: \vec{e}^{3}=\frac{\hat{e}_{1} \times \vec{e}_{2}}{\hat{e}_{3} \cdot \hat{e}_{1}+\vec{e}_{2}} \\
& \text { such that } \hat{e}^{-} \cdot \hat{e}_{1}=1 ; \hat{e}^{2} \cdot \hat{t}_{2}=1 ; \hat{e}^{\hat{e}} \cdot \hat{e}_{2}=1 \text { : }
\end{aligned}
$$

$$
\begin{aligned}
& \left(x_{1}, x_{2}, x_{s}\right) \longrightarrow\left(\hat{e}_{1}, \hat{e}_{2}, \hat{e}_{5}\right) \leftarrow(\text { aivm }) \\
& \left.\hat{e}_{j}^{\prime}=\frac{\partial x_{i}}{\partial v_{j}} \hat{e}_{i} \Rightarrow \begin{array}{l}
\hat{e}_{1}=\frac{\partial x_{1}}{\partial v_{1}} \hat{e}_{1}+\frac{\partial x_{2}}{\partial v_{1}} \hat{e}_{i}+\frac{\partial x_{3}}{\partial v_{1}} \hat{o}_{3} \\
\hat{e}_{2}=\frac{\partial x_{1}}{\partial x_{1}} \hat{e}_{1}+\frac{\partial x_{2}}{\partial v_{2}} \hat{e}_{2}+\frac{\partial x_{1}}{\partial v_{2}} \hat{e}_{3}
\end{array}\right\} \text { Equlten (A) } \\
& \hat{e}_{3}=\frac{\partial x_{1}}{\partial r_{2}} \hat{e}_{1}+\frac{\partial \mu_{2}}{\partial \eta_{n}} \hat{e}_{2}+\frac{\partial x_{1}}{\partial v_{3}} \vec{e}_{3} \\
& \vec{A}=q_{1} \hat{e}_{1}^{\prime}+q_{2} \hat{e}_{2}^{\prime}+q_{3} \hat{\theta}_{1}^{\prime} \\
& \vec{A}=\left(\vec{A} \cdot \hat{e}_{1}^{\prime}\right) \hat{e}_{e}^{\prime}+\left(\overrightarrow{h_{e}} \hat{e}_{2}^{\prime}\right) \hat{e}_{3}^{\prime}+\left(\vec{A} \cdot \hat{e}_{3}^{\prime}\right) e_{3}^{\prime} \\
& \hat{e}_{1}^{\prime}, \hat{e}_{2}^{\prime}, \hat{e}_{3} \text { ave green by enc }(A)
\end{aligned}
$$

(2)

$$
\begin{aligned}
& \left(\hat{e}_{1}, \hat{e}_{2}\right) \longrightarrow\left(\hat{e}_{1}, \hat{e}_{0}\right) \\
& \vec{p}:\left(r_{1}, x_{2}\right) \longrightarrow(r, \theta)
\end{aligned}
$$

$$
\left[\begin{array}{l}
x_{1}=r \cos \theta \\
x_{2}=r \sin \theta
\end{array}\right.
$$

b)
c)
d) for the trane formation from $\left(x, x_{1}\right) \rightarrow(x, \theta)$

Metric temer $G=\left[\begin{array}{cc}1 & 0 \\ 0 & -\end{array}\right] \quad g_{12}=g_{21}=0 \Rightarrow(r, \theta)$ is erthogeme

$$
\begin{aligned}
\text { Met te coefperess }= & f_{1}=\sqrt{g_{11} ;} h_{2}=\sqrt{g_{22}} \\
& h_{1}=1 ; h_{2}=\gamma
\end{aligned}
$$

e)

$$
\begin{aligned}
\because \hat{e}_{2} & =\operatorname{sos} \theta \hat{e}_{1}+\sin \theta \hat{r}_{2} \\
\hat{c}_{0} & =-r \sin \theta \hat{e}_{1}+r \cos \theta \hat{e}_{2}
\end{aligned}
$$

Reciprece banis

$$
\Rightarrow \hat{e}^{\gamma}=\frac{\hat{e}_{\theta} \times \hat{e}_{2}}{\hat{e}_{\gamma} \cdot\left(\hat{e}_{0} \times \hat{e}_{2}\right)}=\frac{\hat{e}_{\gamma}}{\hat{e}_{\gamma} \cdot \hat{e}_{\gamma}}=\hat{e}_{\gamma}
$$

$$
\begin{aligned}
& =\left[\begin{array}{cc}
\cos ^{2} \theta+8 \sin ^{2} \theta & -r \sin \theta \cos \theta+r \sin \cos \theta \\
-r \sin \theta \cos \theta+r \sin \theta \cos \theta & \gamma^{2}\left(\sin ^{2} \theta+\cos ^{2} \theta\right)
\end{array}\right] \\
& G=\left[\begin{array}{ll}
1 & 0 \\
0 & \gamma^{2}
\end{array}\right]=\left[\begin{array}{ll}
g_{11} & g_{12} \\
g_{21} & g_{22}
\end{array}\right] \Rightarrow \\
& g_{0}=1 \quad g_{13}=0 \\
& g_{21}=g_{12}=r^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { a) Fiod unit veatora }\left(\hat{e}_{v}, \hat{e}_{c}\right) \\
& \hat{e}_{r}=\frac{\partial x_{i}}{\partial r} \hat{e}_{2}=\frac{\partial x_{1}}{\partial r} \hat{e}_{1}+\frac{\partial x_{2}}{\partial r} \hat{e}_{2}=\operatorname{cose} \hat{e}_{1}+\sin \theta \hat{e}_{2}=\hat{e}_{r} \\
& \hat{e_{\theta}}=\frac{\partial x_{i}}{\partial \theta} \hat{e}_{2}=\frac{\partial x_{1}}{\partial \theta} \hat{e}_{1}+\frac{\partial x_{1}}{\partial \theta} \hat{e}_{1}=-r \sin \hat{e}_{1}+r \cos \theta \hat{e}_{2}=\hat{e}_{0} \\
& J_{\text {robian }}=J=\frac{\partial\left(x_{1}, x_{2}\right)}{\partial(r, \theta)}=\left[\begin{array}{ll}
\frac{\partial x_{1}}{\partial r} & \frac{\partial x_{1}}{\partial \theta} \\
\frac{\partial x_{2}}{\partial r} & \frac{\partial x_{2}}{\partial \theta}
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & -r \sin \theta \\
\sin \theta & r \cos \theta
\end{array}\right] \\
& J=\operatorname{det}(J)=\gamma\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=\gamma \\
& F=r
\end{aligned}
$$

2 (20) (f) Co-variont ant condrumarient compone-t of prim P in frelar coertinatio. (3)
 \rightarrow covariant vector
$\left(e^{1}, \hat{e}^{2}\right)$

- $\vec{p}=A_{1} \hat{e}^{\prime}+A_{3} \hat{e}^{2}$

$\therefore|\vec{p}|=\sqrt{r^{2}+s^{2} \theta+\delta^{2} s \alpha^{2} \theta}=\gamma=\sqrt{A_{1} A^{2}+A_{2} A^{2}}=\sqrt{\gamma^{2} \cos ^{2} \theta+\gamma^{2} \sin ^{2} \theta}=\gamma$

$$
\text { Nex, } \quad \begin{aligned}
A_{1} & =A^{\prime}=x_{1}=2 \cos \theta \\
A_{2} & =A^{2}=x_{2}=r \sin \theta
\end{aligned}
$$

3. $\left(x_{1}-x_{2}\right) \vec{\imath}(r, 0)$
(a) $d s^{2}=d x_{i} \cdot d x_{i}=d x_{i}^{2}+d x_{2}^{2}=d q_{i} g_{i j} d q_{j} ; v_{1}=r: v_{2}=0$

$$
=d r g_{11} d r+d r g_{12} d \theta+d \theta g_{21} d r+d \theta_{21} d \theta
$$

$$
\text { If } q_{1}=r: \varepsilon_{2}=0 \quad \text { in poiar co ovelnate. }
$$

$$
\vec{r}=x_{1} \hat{e}_{3}+x_{2} \hat{r}_{2}=r \cos \theta+\hat{e}_{1}+r \cos \hat{r}_{2}
$$

$$
\begin{aligned}
& \vec{r}=x_{1} \hat{e}_{1}+x_{2} \hat{e}_{2}=r \cos \theta \hat{e}_{1}+r \operatorname{rin} \theta \hat{e}_{2} \\
& \frac{\partial \hat{r}}{\partial \hat{x}_{1}}=\frac{\partial \vec{\gamma}}{\partial r}=\cos \hat{e}_{1}+\sin \theta \hat{e}_{2} ; \frac{\partial \hat{\gamma}}{\partial \theta_{2}} \cdot \frac{\partial \hat{r}}{\partial \theta}=-r \sin \theta \hat{e}_{1}+r \cos \theta \hat{e}_{2}
\end{aligned}
$$

$$
\left(\frac{\partial \vec{r}}{\partial \vec{q}_{1}} \times \frac{\partial \vec{r}}{\partial \vec{r}_{2}}\right)=\left(\begin{array}{ccc}
\hat{e}_{1} & \vec{e}_{2} & \hat{e}_{2} \\
\cos \theta & \sin \theta & 0 \\
-\gamma \sin 2 & r \cos \theta & 0
\end{array}\right)=\hat{e}_{2}\left(r \cos ^{2} \theta+r \sin ^{2} \theta\right)=\gamma \hat{e}_{2}
$$

$$
\therefore \overrightarrow{d A}=\gamma d \gamma d \theta \dot{e}_{2} \Rightarrow|\alpha A|=\gamma d r d \theta
$$

