QUIZ - 2, IIT HYDERABAD

ME5010 – Mathematical Methods for Engineers

Date: 13/08/2014

Maximum Marks - 30

Time duration: 1 hours

Instructions:

- i) Mobile is not allowed in the exam.
- ii) Only calculator is allowed.
- 1. For a vector \vec{A} of components (x_1, x_2, x_3) along the unit basis vectors $(\hat{e}_1, \hat{e}_2, \hat{e}_3)$, write the components of \vec{A}
 - (a) Along a transformed co-ordinates (q_1, q_2, q_3) having unit vectors $(\hat{e}'_1, \hat{e}'_2, \hat{e}'_3)$ using x-q relationship.
 - (b) In terms of the reciprocal basis, $(\hat{e}^1, \hat{e}^2, \hat{e}^3)$. Also write the $(\hat{e}^1, \hat{e}^2, \hat{e}^3)$ in terms of $(\hat{e}_1, \hat{e}_2, \hat{e}_3)$.
 - (c) Along the contravariant $(\hat{e}_1, \hat{e}_2, \hat{e}_3)$ and covariant $(\hat{e}^1, \hat{e}^2, \hat{e}^3)$ systems, respectively. Also, obtain the relationship between contravariant and covariant components of vector \vec{A} in terms of the components of metric tensor G. (Total Marks: 3 + 3 + 4 = 10)
- 2. If (\hat{e}_1, \hat{e}_2) is the basis vector of the Cartesian co-ordinate system P (x_1, x_2) then do the following
 - (a) Find the unit vector $(\hat{e}_r, \hat{e}_{\theta})$ in polar co-ordinate system (r, θ) .
 - (b) Find the Jacobian, J, of the transformation (x_1, x_2) to (r, θ) .
 - (c) Find the metric tensor G of the transformation.
 - (d) Using G, prove that (r, θ) co-ordinate system is orthogonal and then obtain the metric coefficients (h, h_2) .
 - (e) Find the reciprocal basis $(\hat{e}^r, \hat{e}^\theta)$ of the polar co-ordinate system (r, θ) .
 - (f) Obtain the co-variant and contravariant and co-variant components of the point P in terms of polar co-ordinates.

(Total Marks: 2 + 2 + 2 + 2 + 2 + 4 = 14)

3. For the co-ordinate transformation from (x₁, x₂) to (r, θ).
(a)Write the differential arc length ds in terms of (dx₁, dx₂) and (dr, dθ), respectively, using the metric tensor G.
(b) Using the formula dA = ∂r/∂q₁ × ∂r/∂q₂ dq₁dq₂, where r = x₁ê₁ + x₂ê₂ and (q₁, q₂) is the transformed co-ordinate system, obtain the expressions of differential area element dA in Cartesian as well as polar co-ordinates, respectively. (Total Marks: 2 + 4 = 6)

********* Good Luck***********

********* Good Luck**********

********* Good Luck***********