QUIZ - 1, IIT HYDERABAD

ME5010 - Mathematical Methods for Engineers

Maximum Marks - 30

Date: 13/08/2014

Time duration: 1 hours

Instructions:

i) Mobile is not allowed in the exam.
ii) Only calculator is allowed.

1. For a co-ordinate transformation from ($\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3$) to ($\mathrm{q} 1, \mathrm{q} 2, \mathrm{q} 3$), write the relationship between ($\mathrm{dx} 1, \mathrm{dx} 2$, dx 3) and (dq1, dq2, dq3) using the matrix notation, Einstein/Index notation, and Gibbs/vector notation, respectively. (Total Marks: 2)
2. Find the order of the following tensors written in its index form:
(Total Marks: 4)
(a) A, (b) $A_{i j}$, (c) $A_{i}^{i j}$, (d) $A_{i i}$, (e) $\frac{\partial}{\partial x_{i}}$, (f) $\frac{\partial^{2}}{\partial x_{i}^{2}}$, (g) $A_{i j k}$ (h) ∇
3. If the components A_{i} of a vector A can be written in terms of its unit vectors $e_{i}, \vec{A}=A_{i} e_{i}$ then write the components of (a) ${ }^{2} T$, (b) ${ }^{3} T$ (c) $T_{i}^{i j},(i, j=1,2,3)$ (Total Marks: 3)
4. Using the index notation convention, write the index form of the following operations: (Total Marks: 8)
(a) ${ }^{2} T=\vec{A} \otimes \vec{B}$
(b) $\vec{B}={ }^{2} T \cdot \vec{A}$
(c) ${ }^{2} T: \vec{A}$
5. Do the following using index notation
a) If $y_{i}=a_{i j} x_{j}$ and $x_{i}=a_{i j} z_{j}$ then write an index form of y in terms of z .
(Total Marks: 3)
b) Prove that $\vec{A} \times(\vec{B} \times \vec{C})=\vec{B}(\vec{A} \cdot \vec{C})-\vec{C}(\vec{A} \cdot \vec{B})$
c) Prove that $\nabla \times(\nabla \times \vec{A})=\nabla(\nabla \cdot \vec{A})-\nabla^{2} \vec{A}$

Solution
(1)

$$
\begin{align*}
& \left(v_{1}, v_{5}\right) \leftrightarrow\left(8, v_{1}, x_{1}\right) \\
& \left(d x_{1}, d x_{2}, d x_{3}\right) \leftrightarrow\left(d v_{1}, 1 v_{2}, d v_{3}\right) \\
& d x_{1}=\frac{\partial v_{1}}{\partial c_{1}}+v_{1}+\frac{\partial x_{1}}{\partial v_{3}}+v_{2}+\frac{\partial x_{1}}{\partial v_{3}} d v_{3}
\end{align*}
$$

Ginstri-/Indr Nothtre: $d r_{i}=\frac{\partial r_{i}}{\partial \sigma_{j}} d \varepsilon_{j}$
Gi.lts /uecter notat : $\Delta \vec{x}=J+\vec{V}$
(2) a) 0 (b) 1 , (c) 1
(d) 0
(e) 1
(f) 0
(h) 1$]$
(5) $\vec{A}=A_{i} e_{i} ; \theta_{i}$ itvinil vontore
a) ${ }^{1} T=e_{i} e_{j} T_{i j}$
(b) ${ }^{3} T=e_{i} e_{j} e_{k} T_{i j k}$
c) $\left.T_{i}^{i j}=e_{j} T_{i}^{i j}=\left(T_{1}^{1 j} T_{2}^{1 j}+1 T_{3}^{3 j}\right) e_{j}\right]$
(4)

$$
\begin{aligned}
& \text { a) }{ }^{2} T=\vec{A}(\vec{B} \\
& \Rightarrow T_{i j}=A_{i} B_{j}
\end{aligned}
$$

(2)
(b)

$$
\vec{B}={ }^{2} T \cdot \vec{A}
$$

$$
B_{i}=e_{i} e_{j} T_{i j} \cdot R_{k} A_{k}
$$

(6) $2: T: \vec{A}$

$$
\left.=e_{i} \frac{d_{j}}{\left(e_{j} \cdot c_{k}\right.}\right) T_{i j} A_{k}
$$

$$
=e_{i} \delta_{j v} T_{i j} A_{k}
$$

(5)

$$
\Rightarrow y_{i}=a_{i j} x_{j}=a_{i j} a_{i} x^{2} k=a_{i j} a_{j x} z_{k}
$$

(6)

$$
\begin{aligned}
& \text { (h) } \vec{A} \times(\vec{B} \times \vec{C})=\vec{B}(\vec{A}, \vec{c})-\vec{C}(\vec{A}+\vec{B}) \\
& \text { b.ANs }=e_{i j k} A_{j}(B+\vec{c})_{k}=e_{i j *} A_{j}\left(e_{k g m} B_{l} C_{m}\right)=e_{i j k i k l n} A_{j} B_{l} C_{n} \\
& =e_{k i j} e_{k R M} A_{i} B_{l} C n=\left(\delta_{i 4} \delta_{i m}-\delta_{i m} \delta_{j l}\right) A_{j} B_{l} C_{m} \\
& =A_{j} B_{i} C_{j}-A_{j} B_{j} C_{i}=B_{i}(\vec{A} \cdot \vec{C})-C_{i}\left(\vec{A} \cdot B^{-1}\right) \\
& \Rightarrow \vec{A} \times(\vec{B} \times \vec{C})=\vec{B}(\vec{A} \cdot \vec{C})-\vec{C}(\vec{A} \cdot \vec{B})
\end{aligned}
$$

c)

$$
\begin{aligned}
& \nabla \times(\nabla \times \vec{A})=\nabla(\underbrace{\nabla \cdot \vec{A})}_{\left(A_{j, j}\right), i}-\nabla^{2} \vec{A} \cdot(\nabla \cdot \vec{A}) \\
& =\operatorname{eom}_{i k}(\pi \times \vec{A})_{k} j=e_{i, j} f\left(e_{k=n} A_{m, D}\right)_{i j}=e_{i j r} c_{i, k}\left(A_{n, t}\right)_{j} \\
& =e_{k i j} e+2 m(A m, l), j \\
& =\left(\sigma_{i,} \delta_{j n}-\delta_{i m} \delta_{j} \varepsilon\right)\left(A_{m, l}\right), j \\
& \left(A_{j, i}\right)_{j}-\left(A_{i}, j\right)_{i j} \\
& =\left(A, \quad-\left(A_{i}, j\right)\right)_{i j} \\
& \nabla \nabla(8 \times \vec{A})=\nabla(\nabla \cdot A)-\nabla^{1} \vec{A}
\end{aligned}
$$

