QUIZ - 1, IIT HYDERABAD

ME5010 – Mathematical Methods for Engineers

Date: 13/08/2014

Time duration: 1 hours

Maximum Marks – 30

Instructions:

- i) Mobile is not allowed in the exam.
- ii) Only calculator is allowed.
- For a co-ordinate transformation from (x1, x2, x3) to (q1, q2, q3), write the relationship between (dx1, dx2, dx3) and (dq1, dq2, dq3) using the matrix notation, Einstein/Index notation, and Gibbs/vector notation, respectively. (Total Marks: 2)
- 2. Find the order of the following tensors written in its index form: (Total Marks: 4) (a) A, (b) A_{ij} , (c) A_i^{ij} , (d) A_{ii} , (e) $\frac{\partial}{\partial x_i}$, (f) $\frac{\partial^2}{\partial x_i^2}$, (g) A_{ijk} (h) ∇
- 3. If the components A_i of a vector A can be written in terms of its unit vectors e_i , $\vec{A} = A_i e_i$ then write the components of (a) ${}^{2}T$, (b) ${}^{3}T$ (c) T_i^{ij} , (*i*, *j* = 1,2,3) (Total Marks: 3)
- 4. Using the index notation convention, write the index form of the following operations: (Total Marks: 8)

(a) ${}^{2}T = \vec{A} \otimes \vec{B}$ (b) $\vec{B} = {}^{2}T \cdot \vec{A}$ (c) ${}^{2}T : \vec{A}$

4. Do the following using index notation

a) If $y_i = a_{ij}x_j$ and $x_i = a_{ij}z_j$ then write an index form of y in terms of z.	(Total Marks: 3)
b) Prove that $\vec{A} \times (\vec{B} \times \vec{C}) = \vec{B}(\vec{A}.\vec{C}) - \vec{C}(\vec{A}.\vec{B})$	(Total Marks: 5)
c) Prove that $\nabla \times (\nabla \times \vec{A}) = \nabla (\nabla \cdot \vec{A}) - \nabla^2 \vec{A}$	(Total Marks: 5)

********* Good Luck**********

$$\begin{array}{c} & \underbrace{\operatorname{Guldebon}}{} & \underbrace{\operatorname{Guldebon}}{} \\ (& (x_1, x_1, x_1) \leftrightarrow (x_1, x_{1,1}, 4x_1)}{} & (x_1, x_{1,1}, 4x_1) \leftrightarrow (4x_1, 4x_{1,1}, 4x_1)} \\ & \operatorname{Ax}_1 = \frac{2x_1}{2x_1} + \frac{2x_1}{2x_2} + \frac{2x_1}{2x_2} + \frac{2x_1}{2x_2} + \frac{2x_1}{2x_2} + \frac{2x_1}{2x_2}} \\ & \operatorname{Ax}_1 = \frac{2x_1}{2x_1} + \frac{2x_1}{2x_2} + \frac{2x_1}{2x_2} + \frac{2x_1}{2x_2} + \frac{2x_1}{2x_2}} \\ & \operatorname{Crimebol} (& \frac{4x_1}{4x_1}) = \left(\frac{2x_1}{2x_1} + \frac{2x_1}{2x_2} + \frac{2x_1}{2x_2} \right) \left(\frac{4x_1}{4x_2} \right) \\ & \operatorname{Crimebol} (& \frac{4x_1}{4x_1} \right) = \left(\frac{2x_1}{2x_1} + \frac{2x_1}{2x_2} + \frac{2x_1}{2x_2} \right) \left(\frac{4x_1}{4x_2} \right) \\ & \operatorname{Crimebol} (& \operatorname{Ax}_1 + \frac{2x_1}{2x_2} + \frac{2x_1}{2x_2} + \frac{2x_1}{2x_2} \right) \\ & \operatorname{Crimebol} (& \operatorname{Ax}_1 + \frac{2x_1}{2x_2} + \frac{2x_1}{2x_2} + \frac{2x_1}{2x_2} \right) \\ & \operatorname{Crimebol} (& \operatorname{Ax}_1 + \frac{2x_1}{2x_2} + \frac{2x_1}{2x_2} + \frac{2x_1}{2x_2} \right) \\ & \operatorname{Crimebol} (& \operatorname{Ax}_1 + \frac{2x_1}{2x_2} + \frac{2x_1}{2x_2} + \frac{2x_1}{2x_2} \right) \\ & \operatorname{Crimebol} (& \operatorname{Ax}_1 + \frac{2x_1}{2x_2} + \frac{2x_1}{2x_2} + \frac{2x_1}{2x_2} \right) \\ & \operatorname{Crimebol} (& \operatorname{Ax}_1 + \frac{2x_1}{2x_2} + \frac{2x_1}{2x_2} + \frac{2x_1}{2x_2} \right) \\ & \operatorname{Crimebol} (& \operatorname{Ax}_1 + \frac{2x_1}{2x_2} + \frac{2x_1}{2x_2} + \frac{2x_1}{2x_2} \right) \\ & \operatorname{Crimebol} (& \operatorname{Ax}_1 + \frac{2x_1}{2x_2} + \frac{2x_1}{2x_2} + \frac{2x_1}{2x_2} \right) \\ & \operatorname{Crimebol} (& \operatorname{Ax}_1 + \frac{2x_1}{2x_2} + \frac{2x_1}{2x_2} + \frac{2x_1}{2x_2} \right) \\ & \operatorname{Crimebol} (& \operatorname{Ax}_1 + \frac{2x_1}{2x_2} + \frac{2x_1}{2x_2} + \frac{2x_1}{2x_2} + \frac{2x_1}{2x_2} \right) \\ & \operatorname{Crimebol} (& \operatorname{Ax}_1 + \frac{2x_1}{2x_2} + \frac{2x_1}{2x_2} + \frac{2x_1}{2x_2} + \frac{2x_1}{2x_2} + \frac{2x_1}{2x_2} \right) \\ & \operatorname{Crimebol} (& \operatorname{Ax}_1 + \frac{2x_1}{2x_2} \right) \\ & \operatorname{Crimebol} (& \operatorname{Ax}_1 + \frac{2x_1}{2x_2} + \frac{2x_1$$

c) $\nabla \left(\nabla \times \widehat{A} \right) = \nabla \left(\frac{\nabla \cdot \widehat{A}}{(A_{3}^{*}, \widehat{3})} - \nabla \cdot \widehat{A} \right)$ Solve t. 15 = $e_{ijk} \left(\nabla \times \widehat{A} \right)_{ij}$; $e_{ijk} \left(e_{kin} \cdot A_{njk} \right)_{ij}$; $e_{ijk} e_{kin} \left(A_{njk} \right)_{ij}$ = (Am, e), j = (& is big - & indie) (Anie) ; $\begin{array}{c} (A_{j,i})_{,j} & - (A_{i,j})_{,j} \\ \vdots \\ (A_{j,i})_{,i} & - (A_{i,j})_{,i} \\ \vdots \\ \overline{\nabla} \times (\nabla \cdot A) & - \nabla^{\dagger} \overline{A} \end{array}$

********* Good Luck**********