MID SEMESTER EXAMINATION, IIT HYDERABAD

ME5010 - Mathematical Methods for Engineers

Maximum Marks - 30

Date: 26/09/2014
Time duration: $\mathbf{2}$ hours

Instructions:

i) Mobile is not allowed in the exam.

ii) Only calculator is allowed.

1. a) Evaluate $\vec{C}=\vec{A} \times \vec{B}$ using both the normal technique and the tensorial notations, where $\vec{C}=C_{i} \hat{e}_{i}, \vec{B}=B_{i} \hat{e}_{i}$ and $\vec{A}=A_{i} \hat{e}_{i}, i=1,2,3$.

Marks: 2
b) Write the Stokes theorem, Divergence theorem and the Green's theorem in tensorial form.

Marks: 2
c) Obtain the values of ϵ_{216534} and $\epsilon_{i j k} \epsilon^{i j k}$

Marks: 2
2. If ($\hat{e}_{1}, \hat{e}_{2}, \hat{e}_{3}$) and ($\hat{e}_{r}, \hat{e}_{\theta}, \hat{e}_{\varphi}$) are the unit vectors in the Cartesian co-ordinate ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) and the spherical co-ordinate (r, θ, φ) then find
a) the relation between the unit vectors in both the co-ordinate systems,
Marks: 2
b) the differential arc length $d \mathrm{~S}$ in spherical co-ordinate systems.
Marks: 1
c) and the volume element $d \mathrm{~V}$ in spherical co-ordinate systems.
Marks: 1
3. a) Briefly define the maxima and minima conditions for the function of one variable, two variables

Marks: 4 and multivariable.
b) Derive the Euler-Lagrange equation by extremizing the functional of given variables.

Marks: 4
4. a) For a generalized Integral equation of form

$$
\phi(x) u(x)=f(x)+\lambda \int_{\alpha(x)}^{\beta(x)} K(x, t) g(u(t)) d t
$$

where, $\mathrm{u}(\mathrm{x})$ is an unknown function and λ is a known parameter. Based on different values of $\phi(x), f(x)$, $g(u(x)), \alpha(x)$ and $\beta(x)$, mention their values for
i) Linear and nonlinear Integral equation,
ii)Homogeneous and non-homogenous Integral equation
iii)Volterra and Fredholm Integral equations of first and second kind.
b) Obtain the integral equation from the initial value problem $u^{\prime \prime}(\mathrm{t})+u(t)=\cos (t)$, subjected to initial conditions $u(0)=0 ; u^{\prime}(0)=0$.

Marks: 4
c) After classifying the following integral equation, find the values of λ for which it has a unique solution

$$
u(x)=f(x)+\lambda \int_{0}^{\pi} \sin (x-t) u(t) d t
$$

Marks: 5

