MID SEMESTER EXAMINATION, IIT HYDERABAD

ME5010 – Mathematical Methods for Engineers

Date: 26/09/2014

Time duration: 2 hours

Marks: 3

Marks: 5

Maximum Marks – 30

Instructions:

- i) Mobile is not allowed in the exam.
- ii) Only calculator is allowed.
- a) Evaluate C
 ⁻=A × B
 ⁻ using both the normal technique and the tensorial notations, where C
 ⁻ = C_iê_i, B
 ⁻ = B_iê_i and
 ⁻ A = A_iê_i, i = 1,2,3.
 ⁻ b) Write the Stokes theorem, Divergence theorem and the Green's theorem in tensorial form.
 ⁻ Marks: 2
 ⁻ c) Obtain the values of €₂₁₆₅₃₄ and €_{ijk} €^{ijk}
 ⁻ Marks: 2
 ⁻ Marks: 2
- 2. If $(\hat{e}_1, \hat{e}_2, \hat{e}_3)$ and $(\hat{e}_r, \hat{e}_{\theta}, \hat{e}_{\varphi})$ are the unit vectors in the Cartesian co-ordinate (x, y, z) and the spherical co-ordinate (r, θ, φ) then find

a) the relation between the unit vectors in both the co-ordinate systems,	Marks: 2
b) the differential arc length dS in spherical co-ordinate systems.	Marks: 1
c) and the volume element dV in spherical co-ordinate systems.	Marks: 1

3. a) Briefly define the maxima and minima conditions for the function of one variable, two variables Marks: 4 and multivariable.

b) Derive the Euler-Lagrange equation by extremizing the functional of given variables. Marks: 4

4. a) For a generalized Integral equation of form

$$(x)u(x) = f(x) + \lambda \int_{\alpha(x)}^{\beta(x)} K(x,t)g(u(t)) dt$$

where, u(x) is an unknown function and λ is a known parameter. Based on different values of $\phi(x)$, f(x), g(u(x)), $\alpha(x)$ and $\beta(x)$, mention their values for i) Linear and nonlinear Integral equation,

ii)Homogeneous and non-homogenous Integral equation

iii)Volterra and Fredholm Integral equations of first and second kind.

φ

- b) Obtain the integral equation from the initial value problem $u''(t) + u(t) = \cos(t)$, subjected to initial conditions u(0) = 0; u'(0) = 0. Marks: 4
- c) After classifying the following integral equation, find the values of λ for which it has a unique solution

$$u(x) = f(x) + \lambda \int_0^n \sin(x - t) u(t) dt$$