Problem Set I CS1250: Combinatorics

Instructions:

You are encouraged to attempt most of the problems before the next class.

Problems:

- 1. Let $S = \{1, 2, \dots, 10^8\}$.
 - (i) How many numbers in S contain the digit 1?
 - (ii) How many numbers in S contain the digit 1 or the digit 7?
 - (iii) How many numbers in S contain the digit 1 or the digit 7 but not both?
- 2. Let d, n be natural numbers. Then d is said to be a divisor of n if $\frac{n}{d} \in \mathbb{N}$.

Let
$$N = 2^{10} \times 3^8 \times 5^{11}$$
.

- (i) How many divisors does the number N have?
- (ii) What is the sum of all the divisors of N?
- 3. Find the number of subsets of $\{1, 2, \dots, n\}$ whose size is even.
- 4. In how many ways can the letters of NEWYORK be arranged without containing NEW or YORK as substrings?
- 5. Find the number of ways to partition mn people into m groups of n each.
- 6. Let $m, n \ge 1$ be natural numbers. Suppose that you are at (0,0) on the plane and at each step you can increase either your x-co-ordinate or y-co-ordinate by 1.
 - (i) In how many ways can you reach the point (m, n)?

- (ii) In how many ways can you reach the point (m, n) without going through (r, s), where 0 < r < m, 0 < s < n?
- 7. We have three boxes labeled A,B,C and 100 distinct books to be put inside these boxes. In how many ways can we do this if the number of books in box A is to be 30, the number of books in box B is to be 50 and the number in box C is to be 20?
- 8. Find the number of subsets S of $\{1, 2, 3, 4, 5, 6, 7\}$ such that the sum of the elements of S is divisible by 7.
- 9. A standard deck of playing cards contains 52 cards four suits of 13 cards each. The suits are spades (\clubsuit) , clubs (\clubsuit) , hearts (\heartsuit) and diamonds (\diamondsuit) . The 13 cards in each suit are labeled $A,2,3,\ldots,10,J,Q,K$.

A set of 5 cards is said to be a hand.

- (i) How many hands form a flush, i.e. all five cards being from the same suit?
- (ii) How many hands contain Four Of a Kind, i.e. four cards with the same value, four eg: four As, four 7s etc.?
- (iii) How many hands form a Straight, i.e. 5 cards in increasing order such that not all are from the same suit? The lowest card is A although a Straight can also end in an A. [Eg: $A\clubsuit$, $2\spadesuit$, $3\spadesuit$, $4\heartsuit$, $5\diamondsuit$ and $10\diamondsuit$, $J\spadesuit$, $Q\heartsuit$, $K\heartsuit$, $A\spadesuit$]
- 10. Consider the iterated substitution cipher which works as follows:

Given a permutation π of A, B, \ldots, Z , the *ith* letter of the message is substituted *i* times using π .

For example, if the permutation were $A \to Z, B \to A, C \to B, \dots, Z \to Y$, and the message is CODE, then the ciphertext would be BMAA.

For an unknown key π , the following two plaintext-ciphertext values are known.

Plain-text 1: "THEQUICKBROWNFOXJUMPSOVERTHELAZYDOG"

Cipher-text 1: "XXIIGQYKJRCWRRCXLKKPAYFQRZZIPAXYNYU"

Plain-text 2: "PERMUTATION"

Cipher-text 2: "BAVMGZQTAYV"

Find the key and decipher the ciphertext "TAJAWRCVASIREDISXOCFJAVYP".