
Week 2 CS6160: Cryptology

Computational Security, Pseudorandom Generators, Stream Ciphers

1 Drawbacks of Perfect Security and the One-

Time Pad

We have seen one de�nition of security, namely perfect security. We have
also seen an example of a perectly secure cryptosystem, namely the One-
Time Pad.

However, in any perfectly secure the key-space must be at least as large as
the message space, equivalently, the key must be as long as the message.
This is because of the following result of Shannon.

Theorem 1. Let Π = (M,C,K) is a cryptosystem that is perfectly secure,
then we must have |K| ≥ |M .

Instead of a formal proof, we work through an example and suggest how the
same idea can be used for a general proof.

Example: Let M = {00, 01, 10, 11}, C = M,K = {01, 10, 11} and let
Enc(m, k) = m⊕k. We show that this cryptosystem is not secure by showing
two messages that are distinguishable. Let m0 = 00,m1 = 01. The possible
ciphertexts for m0 are {01, 10, 11, }, while the possible ciphertexts for m1 are
{00, 10, 11}. In the indistinguishablity experiment, an adversary, on observ-
ing 00, outputs 1 (indicating that the message is m1) and on observing 01,
outputs 0. Otherwise they make a random guess. Then the probability that

their guess is correct (over the random choice of key and message) is
2

3
.

It is even easier to show that the distribution of ciphertexts is NOT indepen-
dent of the message. To prove Shannon's theorem, we will be able to �nd a
triplem0,m1, c such that Enc(m0, k) ̸= c for every k while Enc(m1, k) = c for
some key k. This means that Pr[Enc(m0, k) = c] = 0 while Pr[Enc(m1, k) =
c] ̸= 0. You are invited to think about why such a triple must exist if
|K| < |M |.

1

2

Having keys that are as large as messages is impractical, as messages may
include �les that are several GBs large. Further how can such a large key be
distributed securely between the communicating parties in the �rst place?

The One-Time Pad in particular, also has the following other drawbacks:

� It cannot be used many times. Given two ciphertexts c1, c2 that are
encrypted by the One-Time Pad using the same key, we can �nd c1⊕c2
which is also m1 ⊕m2 and obtain partial information about m1,m2.

� It is completely insecure against Chosen Plaintext Attacks. In such
attacks, it is assumed that the adversary has access to some pair (m, c)
where c = Enc(m, k), and may even be able to ask for the ciphertext
corresponding to a message of their choice. However, knowing m, c, the
adversary can immediately �nd k.

� It is vulnerable to tampering in a predictable way. That is, if an at-
tacker changes the ciphertext, they know the e�ect on the plaintext
(although they don't know the plaintext itself).

2 Computational Security

We will relax the de�nition of perfect security in two ways: by focusing only
on e�cient adversaries, and by modifying the requirement in the indistin-
guishability experiment so that the adversary may be able to guess with a
probability slightly larger than 1/2, but not much larger. The �rst relaxation
is practical because if an ine�cient adversary would not be able to break the
cryptosystem in reasonable time, eg: if the time needed to gain information
is 1000 years, then we can consider the cryptosystem to be practically safe.

We now make these ideas precise.

De�nition 1. An algorithm is said to run in probabilistic polynomial time
(PPT) if its running time is bounded by some polynomial p(n) (where n is
the size of the input), and can make random choices.

Thus, we consider an adversary to be e�cient if they are PPT.

De�nition 2. We say that a function f(n) is negligible if for every polyno-

mial p(n), it is the case that |f(n)| < 1

p(n)
(for all su�ciently large n).

3

Why is a negligible function have the above de�nition? Recall the last exer-
cise from Class 3. We can generalize it as follows.

Suppose that an adversary is able to guess some secret information correctly

with probability ε. If the adversary makes
3

ε
such guesses independently,

then the probability that at least one guess is correct is greater than 0.9.

In particular, suppose that a PPT adversary can, in time p(n), guess some in-

formation correctly with probability
1

f(n)
, where p(n), f(n) are polynomials.

Then the adversary can, in time 3p(n)f(n), guess that information correctly
with probability 0.9, which is something to be avoided. This is a reason why

a negilible probability must be less than
1

f(n)
for every polynomial function

f(n).

3 Pseudo Random Generators

Informally, a Pseudo Random Generator(PRG) is an algorithm that gener-
ates a random-looking sequence of bits. Usually a PRG takes a short sequence
of random bits, called the seed, and produces a longer sequence of bits.

Formally, we have the following de�nition:

De�nition 3. A function G : {0, 1}∗ → {0, 1}∗ is a PseudoRandomGenera-
tor (PRG) if it can be computed in polynomial time and satis�es the following
two properties:

(i) If G takes an input of length n and produces an output of length l(n), then
l(n) ≥ n+1. This property ensures that the PRG produces more random bits
that it is given as input; otherwise, it could, for example, just produce its
input itself as an output.

(ii) The output of G() on a random seed from {0, 1}n is indistinguishable
from a random string in {0, 1}l(n) in the sense of De�nition 4 or 5 of indis-
tinguishability of two probability distributions (see below).

De�nition 4. [Indistinguishability for probability distributions π1, π2]

Let π1, π2 be two probability distributions on {0, 1}m. Let s1, s2 be random
strings chosen according to π1, π2 respectively, and let b be chosen randomly

4

chosen from {1, 2}. Given the string sb, an adversary A outputs a value
b′ ∈ {1, 2}. The adversary wins if b′ = b. We say that π1, π2 are indis-
tinguishable, if for every PPT adversary A, the probability that A wins the

above experiment is at most
1

2
+ negl(n), where negl(n) denotes some negli-

gible function.

De�nition 5. [Statistical Indistinguishability for probability distributions π1, π2]

A statistical test is a PPT algorithm that accepts a binary string and ouputs
a value in {0, 1}. We say that two probability distributions π1, π2 on {0, 1}n
are statistically indistinguishable if for every statistical test T , we have:

|Prπ1 [T (x) = 1]− Prπ2 [T (x) = 1]| = negl(n).

An example of a class of PRGs, which however are not indistinguishable, is
Linear Feedback Shift Registers (LFSRs). A LFSR uses a recurrence of the
form xn =

∑
i∈I cixn−i mod 2 where I is some constant set and ci ∈ {0, 1};

the positions of I are referred to as taps. For example, if I = {1, 4}, then
recurrence is xn = xn−1 + xn−4 (mod 2). Given a seed s, for example,
s = 101100, the recurrence is used to compute the successive bits, in this case,
the successive bits are 1, 0, 1, 1, It turns out that given 2n successive bits
in the output of a LFSR, it is possible to reconstruct the LFSR, and hence
predict future bits of the sequence.

4 Stream Ciphers

We consider stream ciphers based on PRGs.

Given a PRG G : {0, 1}n → {0, 1}l(n), we de�ne the stream cipher ΠG =
(Gen,Enc,Dec) as follows. The message space and cipher space are M =
C = {0, 1}l(n) and the key space is K = {0, 1}n.

� Gen() takes as input 1n and ouputs a random string k ∈ {0, 1}n.

� Enc(m, k) = m⊕G(k).

� Dec(c, k) = c⊕G(k).

Theorem 2. Given a PRG G : {0, 1}n → {0, 1}l(n) satisfying De�nition 3,
the cryptosystem ΠG is indistinguishable in the presence of an eavesdropper.

5

Proof. We prove the contrapositive, i.e. suppose that ΠG is not secure. Let
A be a PPT adversary that, given 1n, can produce two messages m0,m1 of

length l(n) and win the indistinguishability game with probability
1

2
+ f(n),

where f(n) is non-negligible.

We construct a PPT algorithm B which can distinguish the output of G from
a random string in {0, 1}l(n). Let k ∈ {0, 1}n and s1 ∈ {0, 1}l(n) be chosen at
random; let s0 = G(k). A random string s ∈ {s0, s1} is given to B and the
goal is to show that B can predict whether s = s0 or s = s1 with probability
non-negligibly more than 1/2.

Given the string s, B computes two strings c0 = m0 ⊕ s and c1 = m1 ⊕
s. Notice that if s = s0, then the two strings c0, c1 are the ciphertexts
corresponding tom0,m1 whereas if s = s1, then c0, c1 are two random strings.

The main idea is that in one case (when s = s0), A, when given one of c0, c1
will be able to identify whether it corresponds to m0 or m1 with probability
larger than 1/2. In the other case, when s = s1, every algorithm (and in
particular A) can only make the identi�cation with probability equal to 1/2.

Thus, B does the following: pick c ∈ {c0, c1} uniformly at random and invoke
A with c as input. If A correctly identi�es whether c = c0 or c = c1, then B
outputs that s = s0, otherwise B outputs that s = s1.

The probability that B's answer is correct is:
1

2

(
1

2
+ f(n)

)
+

1

2
· 1
2
=

1

2
+

f(n)

2
. This completes the proof of Theorem 2

