
Week 1 CS6160: Cryptology

History, Encryption Systems, and Perfect Security

1 History

1.1 The Casesar and Mono-alphabetic Substitution Ci-

phers

According to history, Julius Caesar (who lived around 50BC) used to encode
any messages that he sent, so that anyone who intercepts the message cannot
read it. The method he used was to shift each character by 3 letters further in
the alphabet. For example, the sentence "I can read this." would be encoded
as "L fdq uhdg wklv." Clearly, this scheme is easy to decrypt even if one
doesn't know the shift, by simply tring the 26 possibilities.

Relatively stronger, but still very insecure, is the monoalphabetic substitu-
tion cipher, in which each character is represented by some other character
or symbol, not necessarily by a common shift. For example, the ciphertext
"Uv jqz vor frzu el vukrz; uv jqz vor jeyzv el vukrs." could be an encoding
of the message "It was the best of times; it was the worst of times." where
the substitution mapping is given by the table below.

Character a b e f h i m o r s t w
Substitution q f r l o u k e y z v j

Such ciphers were analyzed as early as 800 AD by the Arab mathematician
Al Kindi who wrote a treatise on cryptanalysis. The method of solving such
a cipher is to do a frequency analysis, i.e. to count the occurrences of each
character. The frequency distribution in large texts in a natural language
tend to be similar to that observed from statistical data. For the English
language, the frequency distribution is as shown in the table below.
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Figure 1: Frequency distribution of English letters, shown as probabilities.
Courtesy Wikipedia

1.2 The Vigenere Cipher

Polyalphabetic ciphers attempt to mask the frequency distribution, and an
example of this is the Vigenere Cipher, invented in the 15th century.

In the Vigenere Cipher, the secret key is a string usually English. To encode
a message, the key is repeated till its length becomes equal to that of the
message and then corresponding characters are added modulo 26. An exam-
ple should make this clear. Let the message be m=ATTACKATDAWN and
let the key be k=RING. Then Enc(m,k) is obtained by adding ATTACK-
ATDAWN and RINGRINGRING to obtain: RBGGTSNZUIJT. Here, the
letters A,B,. . . ,Z are mapped to 0,1,. . . ,25. Thus, T+I is (19+8) mod 27=1,
which corresponds to B.

While the Vigenere Cipher is stronger than a simple substitution cipher, it
can also be broken. Methods to break it were found independendently by
Kasiski and Babbage in the 19th century, and are based on the following idea:
When two patterns repeat, then the di�erence between their positions is a
likely candidate for a multiple of the key length. For example, if we observe
the ciphertext QZVUABAVILQZVU then the pattern QZVU appears in two
positions that are 6 apart, we may guess that the key length is 2 or 3 or 6.
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For a candidate key-length L, frequency analysis of characters in positions
that are a multiple of L apart will help �nd the key.

1.3 Modern Cryptography

Modern cryptography has many applications: Internet and emails, bank-
ing, credit cards, �le encryption, content protection (eg: DRMs) and many
more. It uses a variety of tools to solve a variety of security problems. Some
examples:

� Con�dentiality: This is the most basic requirement, that a message
accessed by an eavesdropper should not reveal information.

� Integrity: A message should not be tampered by an attacker.

� Authentication: The message comes from the source that it claims to
come from. Also authentication of users in any system.

Something that characterizes classical cryptosystems is that they were de-
signed in an ad-hoc manner and have no security guarantees. Most of them
were initially thought to be strong, but broken later. How has modern cryp-
tography learnt from these failures? Here are some typical features that
characterize modern cryptography.

� Formal de�nitions of security. We cannot design a good cryptosystem
without knowing what kind of security guarantees we are aiming for.
We'll see examples from the next class and more examples later.

� Proofs of security. Many modern cryptographic constructions and pro-
tocols come with proofs of what kind of security guarantees they are
able to o�er.

� Precise assumptions. Proofs of security are not unconditional, i.e. they
often use some assumptions about the underlying primitives used.

� Use of primitives. Apart from individual/isolated constructions, many
protocols make use of a set of standard primitives, for example one-
way functions, pseudo-random generators, pseudo-random permuta-
tions etc. These primitives are assumed to have certain security guar-
antees which enables the designer to combine them in ways that make
apparent the security guarantee of the larger system.
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2 Private-Key Encryption Systems

De�nition 1. Given a message-space M , cipher-text space M , and a key-

space K, a private-key encryption system Π over (M,C,K) is a triple

of algorithms (Gen,Enc,Dec) with the following properties:

� Gen is called the key-generation algorithm and outputs a random ele-

ment of K.

� Enc is a function Enc : M × K → C and is called the encryption

algorithm.

� Dec is a function Dec : C × K → M and is called the decryption

algorithm.

� Enc(k,m) = c implies Dec(c, k) = m.

Imagine that a trusted third-party runs the key-generation algorithm Gen()
and distributes a common key k to Alice and Bob. When Alice wants to
send a message m to Bob, she computes c = Enc(m, k) and sends c to Bob.
Bob can now decrypt the message by �nding m = Dec(c, k).

3 Perfect Security

In the 1950s, Claude Shannon introduced the idea of perfect secrecy/perfect
security. Intuitively, a cryptosystem is perfectly secure if zero information

about the message is obtained from observing its ciphertext. This is made
precise as follows: consider a probability distribution on M . Then after ob-
serving a given ciphertext, the posterior distribution on M should be the
same as the prior distribution. For example, if the message could have been
any message in M with uniform probability, then after observing the cipher-
text c, it should be the case that c could be the encryption of any message
in M with uniform probability.

Formally, we have the following de�nition.

De�nition 2. A private-key cryptosystem Π = (Gen,Enc,Dec) is perfectly

secure if for all m ∈ M, c ∈ C and for all random variables X de�ned on M ,

we have the following:

Pr[X = m|Enc(X, k) = c] = Pr[X = m].
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The substitution cipher is not perfectly secure by the above de�nition; �x
n and consider the substitution cipher to be de�ned on M = Σ3, where Σ
consists of the English alphabet (upper and lower case). The key k is a
permutation of Σ generated at random. Let X be a random variable that
is uniformly distributed on M , and let c = ABA. Then for m = ABC, we

have: Pr[X = m] =
1

523
, but Pr[X = m|Enc(X, k) = c] = 0.

An example of a perfectly secure cryptosystem is the One Time Pad, de-
scribed by Vernam in 1914. In the One Time Pad, M is of the form M = Σn

for some alphabet Σ, and K = C = Σn. Suppose that |Σ| = L. For compu-
tation, we identify Σ with {0, 1, . . . , L− 1}; the encryption function is:

Enc(m, k) = (m+ k) (mod L)

where the addition is co-ordinate wise, i.e. for each character separately. The
decryption function is:

Dec(c, k) = (c− k) (mod L)

Two examples:

� Let Σ = {A, . . . , Z}6 and k = ABCABZ. Then Enc(SECRET, k) =
TGFSGS.

� Let Σ = {0, 1}6 and k = 101100. Then Enc(011001, k) = 110101.

Note that for the binary alphabet, the One-Time Pad Encryption function
is the same as the XOR of the message and the key.

3.1 Proof that the One-Time Pad is perfectly secure

Let X be a random variable taking values in M . Let m be an arbitrary
message. We have:

Pr[X = m|Enc(X, k) = c] =
Pr[X = m ∧ Enc(X, k) = c]

Pr[Enc(X, k) = c]

= Pr[X = m]
Pr[Enc(X, k) = c|X = m]

Pr[Enc(X, k) = c]

= Pr[X = m]
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The �rst and second equality use Bayes' theorem that Pr[A|B] =
Pr[A ∩B]

Pr[B]
.

The last equality comes from the fact that for every �xed messagem, we have:

Pr[Enc(m, k) = c] =
1

Ln
since the key k is picked uniformly at random. This

also shows that Pr[Enc(X, k) = c] =
1

Ln
for any r.v. X de�ned on M so

that both numerator and denominator have the same value.

4 Two More De�nitions of Perfect Security

We now give two more de�nitions of perfect security; it turns out that all
three de�nitions are equivalent. That is, a cryptosystem is secure with respect
to one de�nition if and only if it is secure with respect to each of the other
two.

De�nition 3. A private-key cryptosystem Π = (Gen,Enc,Dec) is perfectly

secure if for all m0,m1 ∈ M, c ∈ C, we have:

Pr[Enc(m0, k) = c] = Pr[Enc(m1, k) = c].

Intuitively, the above de�nition is a converse of the �rst de�nition; it says
that the distribution of the ciphertext is independent of the message.

Given a private-key cryptosystem Π = (Gen,Enc,Dec) over (M,C,K) and
an adversary A, the indistinguishability experiment PrivKEav

A,Π is de�ned
as follows.

� Alice uses Gen() to pick a key k ∈ K uniformly at random.

� The adversary picks two messages m0,m1 from M and sends them to
Alice.

� Alice picks b ∈ {0, 1} uniformly at random. Then Alice computes
c = Enc(mb, k) and sends c to the adversary.

� The adversary outputs a value b′ ∈ {0, 1} which is their guess of b.

� The output of the experiment, also denoted by PrivKEav
A,Π , is de�ned

to be 1 if b′ = b and 0 otherwise.
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The goal in the above game is for the adversary to output b′ = b with as
large a probability as possible. Note that by simply guessing randomly, the
adversary will guess correctly with probability 1/2. Perfect indistinguisha-
bility is the property that no adversary can do better. Formally, we have the
following de�nition.

De�nition 4. A cryptosystem Π = (Gen,Enc,Dec) over (M,C,K) is per-

fectly indistinguishable if for every adversary A, it holds that

Pr[PrivKEav
A,Π = 1] =

1

2
.

5 Class Exercises

1. Show that the One-Time Pad is perfectly secure according to De�nition
3.

Solution: For all m, c, we have: Pr[Enc(m, k) = c] =
1

Ln
.

2. Show that the following scheme is not perfectly secure according to
De�nition 4. We de�ne M = {0, 1}n, K = {0, 1}n−1 and C = {0, 1}n.
Given a message m = m1m2 . . .mn and k = k1 . . . kn−1, we de�ne
Enc(m, k) = ((m1 . . .mn−1)XOR(k1 . . . kn−1)) ||mn. Here, || is the
symbol for concatenation.

Solution: The adversary chooses two messages such that one of them
has last bit zero and the other message has last bit one. On seeing the
ciphertext c = c1 . . . cn, the adversary outputs the value of cn and thus
correctly �nds the message corresponding to c with probability 1.

3. Suppose that an adversary is able to guess a secret key k correctly with

probability
1

1000
. Show that if the adversary makes 3000 such guesses

independently, then the probability that at least one guess is correct is
greater than 0.9.

Solution: The probability that all guesses are incorrect is (1− 1

1000
)3000 <

e−3 < 0.1, thus the probability that at least one guess is correct is
greater than 0.9. Here, we used the inequality 1 − x < e−x which is
useful in such calculations.


