
Computational Number Theory
Lecture Notes

N.R.Aravind

—————————

Acknowledgements

The latex source file was built using the LegrandOrangeBook template (copyright
2022, Goro Akechi) available at book-website.com and licensed under the Creative
Commons Attribution-NonCommercial 4.0 License (the “License”). A copy of the
License is available at https://creativecommons.org/licenses/by-nc-sa/4.0.
Minor modifications were made in the use of the template.

I thank the following students who pointed out typos and mistakes in the notes:
Gunangad Pal Singh, Krishn Vikas Kher.

https://www.latextemplates.com/template/legrand-orange-book
https://creativecommons.org/licenses/by-nc-sa/4.0

Contents

Preface . 7

I Polynomials in One Variable

1 Two Equations from Ancient Times . 11
1.1 The Cubic Equation . 11
1.1.1 Geometric solution . 11
1.1.2 Algebraic solution and depressed cubics . 12
1.1.3 Solving a depressed cubic . 13
1.1.4 Quartic and higher powers: More history . 14
1.2 Fast Arithmetic Operations . 14
1.3 The Equation ax+ by = c . 14
1.3.1 Bezout’s Lemma . 15
1.3.2 Euclid’s Algorithm . 16
1.3.3 The Extended Euclidean algorithm . 17
1.4 Notes and Further Reading . 18
1.5 Exercises . 19

2 The Fundamental Theorem of Arithmetic 21
2.1 Prime numbers . 21
2.2 Euclid’s lemma . 21
2.3 The fundamental theorem . 21
2.4 Notes and Further Reading . 22
2.5 Exercises . 22

4 CONTENTS

3 Congruences . 23

3.1 Definition and properties . 23
3.2 Linear congruences and the Chinese Remainder Theorem 24
3.3 Fermat’s little theorem . 25
3.4 The ring Zn . 26
3.4.1 Chinese remainder theorem as an isomorphism . 26
3.4.2 What’s a ring? . 26

3.5 Arithmetic in Zn . 27
3.6 The set Z∗

n and Euler’s totient function . 27
3.7 Order and primitive roots . 28
3.8 Exercises . 29

4 Polynomials over Zn . 31

4.1 The ring Zn[x] . 31
4.2 Lagrange’s theorem . 31
4.3 Euclid’s algorithm and unique factorization for polynomials 31
4.4 The equations xd = 1 and xd = a in Zp . 32
4.5 Application: The RSA Algorithm . 33
4.6 Exercises . 33

5 The Quadratic Equation in Zp . 35

5.1 Quadratic Residues . 35
5.2 Application: Coin Tossing over a telephone . 35
5.3 The Legendre Symbol . 36
5.4 The equation x2 = a: Two easy cases . 38
5.4.1 p≡ 3 (mod 4) . 38
5.4.2 p≡ 1 (mod 4), a =−1 . 38

5.5 Wilson’s theorem and the value of
(

2
p

)
. 38

5.6 Quadratic Reciprocity . 39
5.7 The Tonelli-Shanks Algorithm: Exposition from 2022 40
5.7.1 p≡ 5 (mod 8) . 40
5.7.2 The general case . 41

5.8 The Tonell-Shanks algorithm: Exposition of 2025 43
5.9 Hensel Lifting: From Zp to Zpk . 44

5.10 A second algorithm for finding square-roots . 46
5.11 Exercises . 46

CONTENTS 5

6 Finite Fields . 47
6.1 Groups . 47
6.1.1 Cayley Tables and Isomorphism . 48
6.1.2 Direct products and subgroups . 49
6.1.3 Cosets and Lagrange’s theorem . 49
6.2 Rings . 50
6.3 Fields . 50
6.4 Finite Fields . 51
6.5 Irreducible polynomials in Zp[x] . 51
6.6 Application: Secret sharing . 52

7 Polynomial Factorization over Zp . 53
7.1 Phase 1: Finding the square-free part . 53
7.2 Phase 2: Distinct-degree factorization . 54
7.3 Phase 3: Finding irreducible factors of degree i 55

8 Polynomial Factorization over Z . 57

II Quadratic Equations in Two Variables

9 Primality Testing: Before 2002 . 61
9.1 Fermat and Mersenne primes . 61
9.1.1 Primes of the form 2n +1 . 61
9.1.2 Primes of the form 2n−1 . 62
9.2 Testing Fermat’s little theorem . 62
9.3 Fibonacci and Lucas pseudoprimality tests . 63
9.4 The Miller-Rabin Test . 64
9.4.1 Analysis of time complexity . 65
9.4.2 Analysis of correctness probability . 65

10 The Integer Factoring Problem . 67
10.1 Trial Division and Fermat’s Method . 67
10.2 Pollard rho Algorithm . 67
10.3 Dixon’s Algorithm . 69

11 Primality Testing: The AKS algorithm 73
11.1 A Polynomial Identity . 73
11.2 The Algorithm . 73
11.2.1 Running Time: . 74
11.3 Correctness . 74
11.3.1 The Proof Strategy . 75

6 CONTENTS

11.3.2 The Proof . 75

12 Quadratic Forms . 77

Preface

The purpose of these notes is to present elementary algorithms in number theory
from the point of view of solving polynomial equations - primarily over Z and over
Zp (the ring of integers modulo p with p prime). The simplest case, namely that of
factorizing polynomials in one variable, already uses non-trivial ideas.

The two-variable case is non-trivial even when the degree is restricted to two. We
will study three classical cases of quadratic forms: the Brahmagupta-Pell equation
(x2−ny2 = 1), representations as sum of two squares, and the equation xy = n, which
lead to primality testing and integer factoring.

What about the multivariate cases? Linear equations are solvable efficiently, whether
over Z or Zn. Factoring multivariate polynomials can also be done efficiently, i.e. in
(randomized) polynomial time, over Zp. This requires some understanding of finite
fields, so we shall study finite fields as well as one or two applications.

Over integers, the picture is very different. The problem of deciding if an arbitrary
polynomial in any number of variables has an integer solution - mentioned by
Hilbert among his 23 problems for the twentieth century, was famously shown to be
undecidable by Matiyasevich in 1970 following a series of work by Julia Robinson,
Martin Davis and Hilary Putnam.

IPolynomials in One Variable

1 Two Equations from Ancient Times
11

1.1 The Cubic Equation . 11
1.2 Fast Arithmetic Operations 14
1.3 The Equation ax+ by = c 14
1.4 Notes and Further Reading 18
1.5 Exercises . 19

2 The Fundamental Theorem of Arith-
metic . 21

2.1 Prime numbers . 21
2.2 Euclid’s lemma . 21
2.3 The fundamental theorem 21
2.4 Notes and Further Reading 22
2.5 Exercises . 22

3 Congruences . 23
3.1 Definition and properties 23
3.2 Linear congruences and the Chinese Remainder Theo-

rem . 24
3.3 Fermat’s little theorem 25
3.4 The ring Zn . 26
3.5 Arithmetic in Zn . 27
3.6 The set Z∗

n and Euler’s totient function 27
3.7 Order and primitive roots 28
3.8 Exercises . 29

4 Polynomials over Zn 31
4.1 The ring Zn[x] . 31
4.2 Lagrange’s theorem . 31
4.3 Euclid’s algorithm and unique factorization for poly-

nomials . 31
4.4 The equations xd = 1 and xd = a in Zp 32
4.5 Application: The RSA Algorithm 33
4.6 Exercises . 33

5 The Quadratic Equation in Zp . . . 35
5.1 Quadratic Residues . 35
5.2 Application: Coin Tossing over a telephone 35
5.3 The Legendre Symbol . 36
5.4 The equation x2 = a: Two easy cases 38

5.5 Wilson’s theorem and the value of
(

2
p

)
. 38

5.6 Quadratic Reciprocity . 39
5.7 The Tonelli-Shanks Algorithm: Exposition from

2022 . 40
5.8 The Tonell-Shanks algorithm: Exposition of 2025 43
5.9 Hensel Lifting: From Zp to Zpk 44
5.10 A second algorithm for finding square-roots . . . 46
5.11 Exercises . 46

6 Finite Fields . 47
6.1 Groups . 47
6.2 Rings . 50
6.3 Fields . 50
6.4 Finite Fields . 51
6.5 Irreducible polynomials in Zp[x] 51
6.6 Application: Secret sharing 52

7 Polynomial Factorization over Zp 53
7.1 Phase 1: Finding the square-free part 53
7.2 Phase 2: Distinct-degree factorization 54
7.3 Phase 3: Finding irreducible factors of degree i 55

8 Polynomial Factorization over Z . 57

1. Two Equations from Ancient Times

1.1 The Cubic Equation
Solutions to linear and even quadratic equations have been known from a very long
time. In 1800 BC, Egyptians solved quadratic equations by the "method of false
position", i.e. by finding successively smaller intervals containing a root. From a clay
tablet dated between 1800 BC to 1600 BC, we know that Babylonians of the period
knew how to solve quadratic equations exactly.

A natural follow-up to the quadratic equation is: what about cubic equations? Solving
the simplest cubic equation x3 = a, boils down to finding cube-roots, and finding
cube-roots numerically was also known for a long time; for example, Aryabhatta
(around AD 500),gave a method for finding both square-roots and cube-roots.

What about general cubic equations? This was first studied by Omar Khayyam (AD
1100), where he gave a geometric solution.

1.1.1 Geometric solution

Consider the intersection of the parabola y = x2

a
and the circle (x− r)2 + y2 = r2.

An intersection point satisfies x4

a2 +x2−2rx = 0, i.e. x3 +a2x = 2ra2. Thus we get a
solution to the cubic equation x3 + px = q when p≥ 0. In Omar Khayyam’s time,
negative numbers were avoided and thus the same equation above with a negative
value for p would instead be written as x3 = px+ q with p positive. For example, to
solve the equation x3 +x = 12, we intersect y = x2 with (x−6)2 +y2 = 36. This is
illustrated in Figure 1.1.1 shown below.

Omar Khayyam divided the cubic equation into various categories so that the
coefficients would be positive, and gave different geometric solutions for them.

12 Chapter 1. Two Equations from Ancient Times

x

y

1 2

P

Figure 1.1: Illustration of the geometric solution of x3 +x = 12
1.1.2 Algebraic solution and depressed cubics

While a geometric solution is useful, does the cubic equation have a "closed-form"
expression for its solutions in terms of its coefficients, like the quadratic equation
does? The answer is Yes and here is a solution. A solution to x3 +px+q = 0 is given
by:

x = 3

√
−q

2 +
√

D + 3

√
−q

2 −
√

D. (1.1)

where D = q2

4 + p3

27.

But how do we obtain this? And what about the more general cubic with a non-zero
x2 term? To answer the latter question first, it turns out that we can reduce the
solution of any cubic polynomial to a solution of a cubic without the x2 term: such
a cubic polynomial is called a depressed cubic.

Consider the polynomial f(x) = x3 +ax2 + bx+ c. Substitute x = y + r to obtain

f(x) = y3 +(3r +a)y2 +(3r2 +2ar + b)y +(r3 +ar2 + br + c).

If we choose r =−a/3, then we obtain a depressed cubic in y, let’s call it g(y). Thus
to solve f(x) = 0, we can solve g(y) = 0 and then find the corresponding roots of f .

1.1 The Cubic Equation 13

History

Around AD 1500, Scipione del Ferro, professor at the University of Bologna,
discovered a formula for depressed cubic equations (cubic equations with a
missing x2 term) and shortly before his death in 1526, communicated it to his
disciple, Antonio del Fiore. After del Ferro’s death, around 1535, Fiore issued
a challenge to another mathematician Tartaglia, with a list of 30 problems
all of whose solutions depended on knowing how to solve the cubic equations
x3 +px = q and x3 = px+ q.
Interestingly, Tartaglia had five years earlier, independently figured out solu-
tions to x3 +ax2 = b and x3 = ax2 +b. After accepting the challenge he figured
out shortly how to solve the other kind of cubic equation and thus solved all
the 30 problems posed by Fiore; he himself posed both kinds of equations in
the counter-challenge which Fiore could not solve, and hence won the duel.
Here are two of the equations that Tartaglia solved in the duel: x3 +x = 12
and x3 +3x = 15.
After the duel, Tartaglia was approached by Gerolamo Cardano, to share
his secret as Cardano was writing a book on arithmetic etc. [Incidentally,
Cardano was also the first to write a book on probability although he made
many mistakes in it.] Initially, Tartaglia refused, but later shared his formula
by means of a poem on the promise that Cardano would keep it secret.
Cardano kept his secret for some time, but a few things changed his mind.
Firstly, he himself figured out how to reduce the most general equation to
a depressed cubic; secondly his student Ferrari figured out how to solve the
biquadratic equation, i.e. an equation of degree four. Thirdly, he visited del
Ferro’s house and examined his manuscripts and was convinced that del Ferro
was the original discoverer of the solution to the cubic. He published the
solutions in his new book Ars Magna, which led to a fallout between Cardano
and Tartaglia.

1.1.3 Solving a depressed cubic
We consider the polynomial f(x) = x3 + px + q. Suppose we write x = 3√u + 3√v.
Then

x3 = u+v +3 3√uvx. (1.2)

Now we notice that if u+v =−q and 3 3√uv =−p, then x = 3√u+ 3√v satisfies f(x) = 0.

Clearly we can find such a pair u,v as roots of the quadratic polynomial z2 +qz− p3

27.

Thus we find u = −q

2 +
√

D,v = −q

2 −
√

D, where D = q2

4 + p3

27. The corresponding

root is: x = 3

√
−q

2 +
√

D + 3

√
−q

2 −
√

D.

14 Chapter 1. Two Equations from Ancient Times

Exercise 1.1 Find a root of the polynomial x3 +x2−10. ■

1.1.4 Quartic and higher powers: More history
Quartic (fourth-degree) polynomials also have a closed-form expression, found by
Ferrari (as mentioned in the history), and naturally this led to the question of a
formula for polynomials of degree five and higher. By formula, we mean an expression
using the four standard arithmetic operations plus the operation of taking nth roots.

No such formula was however found despite many attempts and around 1800, Ruffini
(and later Abel), proved that no general formula can exist. This does not however
rule out individual polynomials having roots expressed in terms of radicals; it only
rules out the absence of a common formula that works for all polynomials.

Nevertheless Galois in 1830 figured out the exact conditions under which a polynomial
has a radical solution; in particular most polynomials of degree five and higher do
not have closed form expressions for their roots. The simplest example of such a
polynomial is x5−x−1. Galois thus solved the problem completely and the theory
he built (and further refined by subsequent mathematicians) is called Galois theory.

In a different direction, that every polynomial of degree n has exactly n complex
roots (the fundamental theorem of algebra) was proved by d’Alembert, Gauss and
Argand around 1800.

1.2 Fast Arithmetic Operations
One of our concerns in this course will be the design of efficient algorithms, often
algorithms running in time polynomial in the input size. Thus, we recap the following
facts about how efficiently we can do basic arithmetic operations.

1. Addition, subtraction of two n-bit integers can be done in O(n) time.
2. Multiplication, division of two n-bit integers can be done in O(n logn) time using

the Fast Fourier Transform. The best known algorithm for this fundamental
computation has time complexity O(n logn) and is due to Harvey and van der
Hoeven, 2020.

3. Two polynomials of degree d can be added using O(d) arithmetic operations and
multiplied in O(d logd) arithmetic operations. Notice that for the total time
complexity, the cost of these operations (in terms of the size of the coefficients)
has to be taken into account.

4. Expressions of the form an can be computed using logn multiplications by
binary exponentiation.

It is usually convenient to use the notation O(̃nc) to denote to functions of the
form O(ncg(n)), where g(n) = o(n). Thus, in place of functions such as n logn,
n log2 n,n2 log3/2 n log logn, we may write O(̃n), O(̃n), O(̃n2) respectively.

1.3 The Equation ax+ by = c

In contrast to solving equations over the reals (R) or over the complex numbers (C),
the focus in number theory is to consider equations over integers (Z) or over rational

1.3 The Equation ax+ by = c 15

numbers (Q).

Such equations are called Diophantine equations in honor of Diophantus (ÃD 250).
Diophantus wrote a book called Arithmetica in which he collected over 200 problems
and explained their solutions. He was mainly interested in solutions in terms of
positive rationals; for many problems he found general parametric solutions. His
book famously inspired Fermat to write in its margins. He was also one of the first
persons to use symbolic notation (combined with reasoning by words). Here are
three problems from the Arithmetica.

1. Find two numbers such that each subtracted from the square of their sum gives
a square.

2. Find three numbers such that the product of any two added to the third is a
square.

3. Find two numbers such that the first cubed added to the second is a cube, and
the second squared added to the first is a square.

Notice that for each of these problems, finding a solution is equivalent to finding a
solution to a system of polynomial equations in one or more variables.

In this course, we shall deal with the problem of factorizing/finding solutions to
polynomials in one or two variables, over the integers and also over the field of integers
modulo a prime. For example, the factorization of the polynomial x4 +4 over integers
is x4 +4 = (x2−2x+2)(x2 +2x+2). We can also factorize this polynomial further
modulo 5; x2− 2x + 2 ≡ (x− 3)(x− 4) modulo 5 and x2 + 2x + 2 ≡ (x− 1)(x− 2)
modulo 5.

1.3.1 Bezout’s Lemma
The simplest equations, over Z, are, as in the case of reals, linear equations. Aryab-
hatta was the first to explain how to solve an equation of the form ax+ by = c; an
example that he used was 137x+10=60y.

First, let’s look at an example of an equation with no solutions. Consider the equation
4x+6y = 5. This has no solution in integers because 2 divides the LHS but not the
RHS. In general, we see that if d|a and d|b, then for ax+ by = c to have a solution,
d must divide c. In particular, the greatest common divisor of (a,b) must divide c.
This is a necessary condition but it also turns out to be sufficient.
Theorem 1.1 — Bezout’s Lemma. Let a,b,c be natural numbers. The equation
ax+ by = c has a solution in integers if and only if gcd(a,b) divides c.

Proof. It is both necessary and sufficient to prove that we can express gcd(a,b) as
ax + by for some integers x,y. Let d = gcd(a,b). For a given value of d, we prove
by induction on a + b (over pairs (a,b) with (gcd(a,b) = d) that d can be written
as ax + by. The base case is when a + b = d, i.e. a = d and b = 0. In this clearly
x = 1,y = 0 is a solution. Now consider an arbitrary pair (a,b) with gcd(a,b) = d
and without loss of generality, let a≥ b. Then gcd(a− b,b) = d and by the induction
hypothesis, we have: d = (a− b)x+ by. This implies that d = ax+ b(y−x) and thus
d is an integer-linear combination of a,b as desired. This completes the proof. ■

16 Chapter 1. Two Equations from Ancient Times

We make some remarks: firstly, the proof can be made algorithmic by finding
successively smaller pairs (a,b) till we reach the pair (d,0) and work backwards. A
simple recursive algorithm is the following:

Algorithm 1 Recursive-Bezout:
Input: Integers a,b with a≥ b≥ 0.
Output: A triple (g,x,y) such that ax+ by = g and g = gcd(a,b)

1: procedure Simple-Euclid((a,b))
2: if b = 0 then return (a,1,0)
3: end if
4: (g,x,y)← SIMPLE-EUCLID(a− b,b)
5: Return (g,x,y−x)
6: end procedure

Now the second remark: as in the case of Euclid’s algorithm, we can make it more
efficient by observing that if a = bq +r where 0 < r < b, then the above algorithm will
reduce - after q steps, the pair (a,b) to (b,r) which we may as well do in one step.

1.3.2 Euclid’s Algorithm
Euclid (3̃50 BC) wrote his algorithm in his famous book The Elements, along with a
few other statements in number theory.

Algorithm 2 Euclid’s algorithm
1: procedure Euclid(A,B) ▷ Returns gcd(A,B)
2: a←max(A,B), b←min(A,B)
3: while b ̸= 0 do
4: r← a mod b ▷ gcd(a,b) = gcd(b,r)
5: a← b
6: b← r
7: end while
8: return a
9: end procedure

Sample runs of Euclid’s algorithm:
■ Example 1.1 gcd(186,75) = gcd(75,36) = gcd(36,3)=gcd(3,0)=3. ■

■ Example 1.2 gcd(31,20)=gcd(20,11)=gcd(11,9) =gcd(9,2)=gcd(2,1)=gcd(1,0)=1 ■

Correctness of Euclid’s algorithm: We have gcd(a,b) = gcd(b,a− qb) for every
integer q; in each iteration of the while loop, the current pair (a,b) is updated to a
pair of the form (b,a− qb); thus gcd(a,b) is an invariant across the iterations of the
while loop.

Running Time of Euclid’s algorithm:

1.3 The Equation ax+ by = c 17

Theorem 1.2 Let n = max(log2 A, log2 B). Then the number of iterations in Euclid’s
algorithm is at most 2n. The total time complexity is at most O(̃n2).

Proof. The second statement follows from the first one because the complexity of
each iteration is essentially the cost of integer division, which is O(̃n).

To prove the first statement, let (ai, bi) denote the value of the pair (a,b) after i
iterations, with (a0, b0) = (max(A,B),min(A,B)). Further, let ai = biqi + ri with
0 < ri < bi. Note that ai+2 = bi+1 = ri < bi.

We have ai = biqi + ai+2 ≥ bi + ai+2 > 2ai+2. The ais reduce by a factor of at
least 2 after every two iterations, so that the number of iterations is at most
2 log2(max(A,B)) = 2n. ■

1.3.3 The Extended Euclidean algorithm
We now look at the extended Euclid’s algorithm which, in addition to finding
gcd(A,B), finds two integers x,y such that Ax+By = gcd(A,B).

The idea is to maintain each of the numbers ai, bi after every iteration, as an integer-
linear combination of A,B. At the end of the algorithm, the value of ai equals
gcd(A,B) so that we will have an integer-linear combination for it.

That is: we shall maintain a two by two integer-valued matrix Mi =
(

xi yi

ui vi

)
such

that (
ai

bi

)
=
(

xi yi

ui vi

)
·
(

A
B

)
(1.3)

Initially, we have M0 as the 2 by 2 identity matrix. To compute the Mis successively,
a useful observation is that the pair (ai+1, bi+1) is obtained from (ai, bi) by a linear
transformation, namely:(

0 1
1 −qi

)
·
(

ai

bi

)
=
(

ai+1
bi+1

)
(1.4)

Suppose that we have maintained Equation 1.3 for iteration i and we wish to compute
Mi+1 to maintain it.

Left-multiplying Equation 1.3 by the elementary matrix Ei =
(

0 1
1 −qi

)
and using

Equation 1.4, we obtain:
(

ai+1
bi+1

)
= EiMi

(
A
B

)
. Thus, we see that Mi+1 = EiMi and

we can use this relation to compute the Mis successively.

The algorithm is described below. It has the same asymptotic time complexity as
Euclid’s algorithm.

18 Chapter 1. Two Equations from Ancient Times

Algorithm 3 Extended Euclid’s algorithm
Input: Integers A≥B ≥ 0
Output: Integers x,y,g such that Ax+By = g and g = gcd(A,B)

1: procedure Extended-Euclid(A,B)
2: a← A, b←B
3: x← 1,y← 0 ▷ Ax+By = a will be invariant.
4: u← 0,v← 1 ▷ Au+Bv = b will be invariant.
5: while b ̸= 0 do
6: r← a mod b ▷ gcd(a,b) = gcd(b,r)
7: q← ⌊a/b⌋
8: a← b
9: b← r

10:

(
x y
u v

)
←
(

u v
x− qu y− qv

)
11: end while
12: return (x,y,a)
13: end procedure

■ Example 1.3 An illustration of the algorithm for A = 12,B = 7:

a b x y u v q
12 7 1 0 0 1 1
7 5 0 1 1 -1 1
5 2 1 -1 -1 2 2
2 1 -1 2 3 -5 2
1 0 3 -5 -7 12

Thus, we find that the gcd is 1 and (3,−5) is a solution to 12x+7y = 1. ■

1.4 Notes and Further Reading
Efficient numerical methods for finding real and complex roots of univariate poly-
nomials do exist. One approach, for real roots, is to isolate the roots into disjoint
intervals using results such as Sturm’s theorem or Descartes’ rule of signs, and then
apply Netwon-Raphson or binary search within the interval. For complex (and real)
roots, the Jenkins-Traub algorithm is used in many software for finding roots.

While the extended Euclid’s algorithm has time complexity O(̃n2), there exist several
O(̃n)-time algorithms for computing the gcd of two n-bit numbers. The first of
these were by Knuth in 1970 and Schonhage in 1971. The article by Niels Moller in
Mathematics of Computation (2008) and a simplified half-gcd algorithm by Daniel
Lichtau, should be accessible.

Parallel algorithms for gcd computation have also been studied: Brent and Kung,
in 1983, gave a O(n) time algorithm using O(n) processors; Chor and Goldreich
gave a O(n/ logn) time algorithm using O(n1+ε) processors; Adleman and Kompella
gave an algorithm with a different trade-off, running in poly-log(n) time using a
subexponential number of processors.

1.5 Exercises 19

1.5 Exercises
Exercise 1.2 Find an integer solution to 32x+57y=1. ■

Exercise 1.3 Find all integer solutions to 4x+7y=1. ■

Exercise 1.4 Find three integers x,y,z such that 6x+10y +15z = 1. ■

Exercise 1.5 Find all integers x,y,z such that 2x+3y +5z = 0. ■

Exercise 1.6 (*) Prove that if d|a and d|b, then d|gcd(a,b). ■

Exercise 1.7 The binary gcd algorithm also has a similar complexity as Euclid’s
algorithm and works as follows:

In the first step, divide a,b by the largest power of 2 that divides both of them.
When at least one of them is odd, define a recursive binaryGCD function as
follows: if one of them is zero, return the other number; if a is even and b is odd,
call binaryGCD(a/2, b); if a is odd and b is even, call binaryGCD(a,b/2).

If both a,b are odd, with which parameters should you make the recursive call?
Also find an upper bound on the number of iterations. ■

Exercise 1.8 (+) The goal of this exercise is to find a method to show the existence
of a radical formula for roots of quartic polynomials.

Let f(x) = x4 +ax3 + bx2 + cx+d. Since complex roots appear in conjugate pairs,
we can assume a factorization of f(x) as f(x) = (x2 +αx +β)(x2 +γx + δ). Show
that it is also sufficient to consider polynomials with the coefficient of x3 being
zero. Using the above factorization into two quadratics, show that finding one of
the unknowns (say α) can be reduced to that of solving a cubic equation. ■

Exercise 1.9 (+) Euclid’s algorithm can also be applied for an arbitrary pair of
positive real numbers (a,b) with a > b by setting the quotient as q = ⌊a

b
⌋.

For example, the starting with the pair (3.35,2.35), we obtain the following pairs:

(2.35,1),(1,0.35),(0.35,0.3),(0.3,0.05),(0.05,0), with the sequence of quotients
being 1,2,2,1,6.

(a) Show that if α is a rational number larger than 1, then the algorithm terminates
after a finite number of steps.

(b) By writing a program, compute the first 20 quotients for the pairs (
√

2,1) and
(e,1), where e = 2.71828... is Euler’s number/the base of the natural logarithm.
Do you observe a pattern? Can you prove it for the first pair? ■

2. The Fundamental Theorem of
Arithmetic

2.1 Prime numbers
A natural number n is defined to be a prime number if it has exactly 2 divisors
(namely 1 and n). The sequence of prime numbers begins 2,3,5,7, The first
interesting fact about prime number is that there are infinitely many of them.
Theorem 2.1 There are infinitely many prime numbers.

Proof. Suppose for contradiction that there are only finitely many primes, say
p1,p2, . . . ,pk. Consider N = p1p2 . . .pk + 1. The rest of the proof is left as an
exercise. ■

2.2 Euclid’s lemma
Lemma 2.1 If p is prime and p|ab, then p|a or p|b.

Proof. Suppose for contradiction that p does not divide a and p does not divide
b. Then gcd(p,a) = 1 and by Bezout’s lemma, there exist integers x,y such that
px+ay = 1. Similarly, gcd(p,b) = 1 and there exist integers u,v such that pu+bv = 1.
Multiplying the two relations, we get: (px+ay)(pu+ bv) = 1. Expanding the LHS,
we get a contradiction because p divides each term on the LHS, but the RHS is equal
to 1. This proves the lemma. ■

2.3 The fundamental theorem
Theorem 2.2 Every natural number n > 1 can be uniquely factored into a product
of prime numbers, i.e. we can write n = p1p2 . . .pk, where the pis are prime (not
necessarily distinct), and if n = q1q2 . . . ql with each qi prime, then k = l and
{q1, q2, . . . , ql} is equal (as a multiset) to {p1,p2, . . . ,pk}.

22 Chapter 2. The Fundamental Theorem of Arithmetic

Proof. There are two statements to prove, (a) that every natural number larger
than 1 can be factored into primes and (b) that the factorization is unique (up to
ordering).

We first prove (a) by induction. The first few base cases are 2,3,4 which we see have
a prime factorization. The induction step: We consider an arbitrary natural number
n > 1 and inductively assume that 1,2, . . . ,n−1 have a prime factorization. If n is
prime, then we are done, otherwise let n = ab with 1 < a,b < n. By the induction
hypothesis, a,b have a prime factorization. The two factorizations may be combined
to give a factorization for n. This proves (a).

We now prove (b), also by induction. As before, we may verify that (b) holds for the
base cases 2,3,4. For the induction step, we consider an arbitrary n > 1, assuming
that (b) holds for all numbers lesser than n. Suppose that n = p1p2 . . .pk = q1q2 . . . qk.
We apply Euclid’s lemma to the product q1q2 . . . qk to deduce that p1 divides some
qi. Since qi is prime, we have p1 = qi. Now we apply the induction hypothesis to
n/p1 = p2 . . .pk =∏

j ̸=i qj and conclude that {p2, . . . ,pk}= {qj |j ̸= i} (and k−1 = l−1).
Together with pq = qi, this gives {p1, . . . ,pk}= {q1, . . . , ql}, completing the proof of
(b). ■

As a consequence of the fundamental theorem, we can write every natural number
n > 1 as pe1

1 . . .pek
k with distinct primes pi and ei being a non-negative integer.

2.4 Notes and Further Reading
Historically, unique factorization turned out to be crucial in the development of
algebraic number theory. For example, the set {a + bi : a,b ∈ Z} admits unique
factorization, whereas the set {a+b

√
−5 : a,b∈Z} does not: 6 = (1+

√
−5)(1−

√
−5).

2.5 Exercises
Exercise 2.1 Prove that there are infinitely many primes of the form 4k +3. ■

Exercise 2.2 Show that if gcd(a,b) = 1, then gcd(ab,c) = gcd(a,c)gcd(b,c). ■

Exercise 2.3 Show that if gcd(a,b) = 1 and a|bc, then a|c. ■

Exercise 2.4 Suppose that n = pe1
1 . . .pek

k is the factorization of n, where the pis
are distinct primes. How many divisors does n have? ■

Exercise 2.5 (a) Show that if n > 1 is not prime, then n has a prime factor p such
that p≤

√
n.

(b) Show that n (in N) has at most log2 n distinct prime factors.

(c) Describe an O(̃
√

n) time algorithm to find factorize a given natural number n,
i.e. to find the prime factors pi along with their exponents ei such that ∏i pei

i = n.
■

3. Congruences

3.1 Definition and properties
Let a,b ∈ Z and n > 1 be a natural number. We say that a≡ b (mod n) (read as a is
congruent to b modulo n) if a− b is divisible by n.

Examples: 17≡ 3 (mod 7), −20≡−8 (mod 3), 360≡ 0 (mod 60).

Properties satisfied by congruences:

1. If a≡ b (mod n) and c≡ d (mod n), then a+ c≡ b+d (mod n).
2. If a≡ b (mod n) and c≡ d (mod n), then ac = bd (mod n).
3. Note that division doesn’t work the same way as reals: in general, ac≡ bc (mod

n) does not imply that a≡ b (mod n) OR c≡ 0 (mod n). A counter-example
is n = 6,a = 4, b = 2, c = 3.
To understand what we can deduce from ac ≡ bc (mod n), we rewrite it as
(a− b)c ≡ 0 (mod n). Now we see that in some cases, we can draw some
conclusions. For example, if gcd(c,n) = 1, then we can conclude that a ≡ b
(mod n). Also, if n is prime, then we can conclude that n divides one of
(a− b), c, i.e. a≡ b (mod n) or c≡ 0 (mod n).

4. The congruence relation is an equivalence relation, i.e. it satisfies the following
properties:
(i) Reflexivity: a≡ a (mod n);
(ii) Symmetry: a≡ b (mod n) implies that b≡ a (mod n);
(iii) Transitivity: a≡ b (mod n) and b≡ c (mod n) implies that a≡ c (mod n).
An equivalence relation partitions the set into equivalence classes, in this
case congruence classes. The congruence classes for a given n are {0,±n,±−
2n, . . . ,},{1,1±n,1±2n, . . . ,}, . . . ,{n−1,n−1±n,n−1±2n, . . .}.
We consider the numbers {0,1, . . . ,n−1} to be the canonical representatives of
these congruence classes, as these numbers are the remainders when divided
by n.

24 Chapter 3. Congruences

3.2 Linear congruences and the Chinese Remainder Theo-
rem
Consider the following linear congruence in one variable:

ax≡ b(mod n). (3.1)

We can rewrite the above equation as ax = b+ny; thus we see that this equation has
a solution if and only if gcd(a,n) divides b. It is usually convenient to divide this
equation on both sides by gcd(a,n); translating this back to congruences, this means
considering Equation 3.1 when (a,n) = 1. In this case, it turns out that the solution
is unique.
Theorem 3.1 Given a∈ {1, . . . ,n−1} such that gcd(a,n) = 1, the congruence ax≡ b
(mod n) has a unique solution modulo n.

Proof. Suppose that x1,x2 are two solutions to the given congruence equation. Then
ax1 ≡ b (mod n) and ax2 ≡ b (mod n); subtracting we get:

a(x1−x2)≡ 0(mod n).

Since gcd(a,n) = 1, this implies that n divides x1−x2, i.e. x1 ≡ x2 (mod n). ■

Without the assumption that gcd(a,n) = 1, how many solutions does the linear
congruence 3.1 have? You will figure this out in an exercise below!

Exercise 3.1 Find all the solutions in {0,1, . . . ,24} to 10x≡ 15 (mod 25). ■

Exercise 3.2 Suppose that gcd(a,n) divides b. How many distinct solutions to
ax≡ b (mod n), modulo n, are there? Justify your answer. [Hint: You may be
able to first guess the answer from what you find in the previous exercise.] ■

The second type of linear congruence that we look at is simultaneous congruences,
the most general problem being the following: find all x ∈ Z such that x≡ a1 (mod
n1), x≡ a2 (mod n2), . . . , x≡ a2 (mod nk). That is, we want the integers x that
simultaneously satisfy all the k congruences.

We first look at the simplest case, i.e. k = 2. Consider the following pair of
congruences:

x≡ a(mod n),x≡ b(mod m). (3.2)

We have x = a + ny = b + mz; thus we obtain the equation ny−mz = b−a. This
equation has a solution for y,z in integers if and only if gcd(n,m) divides (b−a). As
before, we simplify further and first consider the case that gcd(n,m) = 1. In this
case, 3.2 has a solution, and further, this solution is unique modulo mn.

3.3 Fermat’s little theorem 25

Theorem 3.2 Let gcd(m,n) = 1. Then the map f : {0,1, . . . ,mn−1}→{0,1, . . . ,m−
1}×{0,1, . . . ,n−1}, given by f(x) = (x1,x2) where x≡ x1 (mod m) and x≡ x2
(mod n), is a bijection.

Proof. The fact that this map is surjective follows from the preceding paragraph:
given (x1,x2), we may use the extended Euclidean algorithm to find y,z such that
ny−mz = x2−x1; then x1 +ny = x2 +mz is a pre-image of (x1,x2).

From the fact that this map is surjective and the fact that the domain and co-domain
are finite sets of the same size, we may already conclude that f is a bijection.

Nevertheless, we may also prove that f is injective, as follows. Let x,y be two
different numbers in {0,1, . . . ,mn−1}. Then x−y ∈ {1, . . . ,mn−1}, hence x−y is
not divisible by mn. Since gcd(m,n) = 1, we can conclude: x−y is not divisible by
m OR x−y is not divisible by n. In either case we have f(x) ̸= f(y), proving that f
is an injective map. ■

Example: Consider m = 3,n = 4. The values of f(0),f(1), . . . ,f(11) are, in order:
(0,0),(1,1),(2,2),(0,3),(1,0),(2,1),(0,2),(1,3),(2,0),(0,1),(1,2),(2,3).

The above result extends naturally to multiple moduli.
Theorem 3.3 — Chinese Remainder Theorem. Suppose that n1, . . . ,nk are natural
numbers such that gcd(ni,nj) = 1 for every i ≠ j. Then the congruences x ≡ a1
(mod n1), . . . , x≡ ak (mod nk) has a unique solution modulo n1 . . .nk. Equivalently,
the map f : {0,1, . . . ,n1 . . .nk−1}→ {0,1, . . . ,n1−1}× . . .×{0,1, . . . ,nk−1} given
by f(x) = (x1, . . . ,xk) with x≡ xi (mod ni) for all i, is a bijection.

Further, we can find this unique value of x in polynomial-time.

Proof Sketch: The first part follows by a repeated application of Theorem 3.2. For
the second part, we may use the Extended Euclidean algorithm to successively solve
pairs of congruences. ■

Exercise 3.3 Find the least positive integer x such that x≡ 1 (mod 3), x≡ 4 (mod
13) and x≡ 7 (mod 23). ■

Exercise 3.4 This problem is attributed to Brahmagupta (7th century). A woman
has a basket of eggs. When she takes them out two at a time, one is left over.
The same thing happens when she takes them out in groups of three or four or
five or six: one egg is left over in the basket. But if she takes them out seven at a
time, none are left over. What is the smallest number of eggs she could have had
in the basket? ■

3.3 Fermat’s little theorem
Theorem 3.4 Let p be a prime. Then, for every natural number a, we have:

ap ≡ a(mod p). (3.3)

26 Chapter 3. Congruences

Equivalently, we may say: for every natural a such that p does not divide a, we
have:

ap−1 ≡ 1(mod p). (3.4)

Proof. We give two proofs.

Proof by mathematical induction on a: We prove Eqn 3.3 for every natural number a.

The base case is a = 1; for the induction step, write (a+1)p = ap +∑p−1
i=1

(
p

i

)
ap−i +1;

observe that every term in the summation is divisible by p and complete using the
induction hypothesis.

Proof by a bijection: We assume that p does not divide a and observe that
{a,2a, . . . ,(p−1)a} must all have distinct values modulo p (to see this, consider their
differences). This implies that the set of these values modulo p must be the same (pos-
sibly in different order) as {1,2, . . . ,p−1}. Now we note that a×2a. . .× (p−1)a≡
(p−1)! (modulo p). We may divide by (p−1)! on both sides; this is possible because
p does not divide (p−1)!; this gives us the desired result. ■

Exercise 3.5 Find the remainder when 31000 is divided by 23. ■

Exercise 3.6 (a) Show that the congruence x41 ≡ 2 (mod 83) has no solutions.

(b) Show that the congruence x2 ≡ 2 (mod 83) has no solutions.

■

Exercise 3.7 Find a solution to the congruence x17 ≡ 2 (mod 43). ■

3.4 The ring Zn

We define Zn to be the set {0,1, . . . ,n−1} together with operations (,+,×), where
+ is defined as a+ b = c if a+ b≡ c (modulo n) and a× b = c if ab≡ c (modulo n).

When we are working with the elements of Zn, the congruence relation becomes an
equality; thus, in Z7, we have: 5+4 = 2 and 5×4 = 6.

3.4.1 Chinese remainder theorem as an isomorphism
In this language, Theorem 3.2 actually encodes a stronger fact: if gcd(m,n) = 1, then
Zmn

∼=Zm×Zn. This is read as the two sets being isomorphic; this means that there is
a bijective map f between the two sets, and further it satisfies: f(x+y) = f(x)+f(y)
and f(xy) = f(x)f(y).

3.4.2 What’s a ring?
For a set R with two binary operations (+,×), we call (R,+,×) a �ring if the following
properties are satisfied:

(a)[Closures] For every a,b ∈R, we have: a+ b ∈R and ab ∈R;

3.5 Arithmetic in Zn 27

(b)[Identities] We have distinct elements 0,1 ∈ R such that a+0 = 0+a = a and
a×1 = 1×a = a for every a ∈R;

(c)[Associativity] For all a,b,c∈R, we have: a+(b+c) = (a+b)+c and a×(b×c) =
(a× b)× c.

(d)[Distributivity] For all a,b,c∈R, we have: a(b+c) = ab+ac and (a+b)c = ac+bc.

(e)Addition is commutative For all a,b ∈R, we have: a+ b = b+a.

(f)Additive inverses For all a ∈ R, there is an element b such that a + b = 0; we
may just write −a for this element.

If multiplication is also commutative, then we call R a commutative ring. Some other
examples of rings are: the set R[x] of polynomials with real coefficients, the set of 2
by 2 matrices with integer entries, this being an example of a non-commutative ring.

Exercise 3.8 Let p be prime and a ∈ Zp,a ̸= 0. Find the number of solutions of
ax = 1. ■

Exercise 3.9 Let p be prime. Find the number of solutions of xy = 1 in Zp. ■

Exercise 3.10 Let p be prime and a,b be non-zero elements of Zp. Find the number
of solutions of ax+ by = 1. ■

3.5 Arithmetic in Zn

The basic arithmetic operations of addition and subtraction have time complexity
O(logn); the complexity of multiplication is O(logn log logn); the complexity of find-
ing ab (mod n) (by repeated squaring) is O(log b logn log logn) = O(log2 n log logn).

An example of exponentiation by repeated squaring: we find 3100 modulo 35 as
follows: we first find the values of 3k modulo 35 for k being a power of two.

k 1 2 4 8 16 32 64
3k(mod 35) 3 9 11 16 11 16 11

We now find:

3100 ≡ 364 ·332 ·34(mod 35)
≡ 11×16×11(mod 35)
≡ 11(mod 35)

What about division? A reasonable definition of b/a modulo n is to define it as
the integer c ∈ {0,1, . . . ,n−1} such that b≡ ac (mod n). Ideally, we would like the
solution to be unique: this is possible if gcd(a,n) = 1 (see next section).

3.6 The set Z∗n and Euler’s totient function
We define Z∗

n = {a ∈ Zn|gcd(a,n) = 1}. This set is important because it consists of
exactly those elements of Zn with a multiplicative inverse. This is in turn crucial

28 Chapter 3. Congruences

when we wish to solve an equation and we wish to divide on both sides by a common
element - this is possible as long as that element belongs to Z∗

n.

For a ∈ Z∗
n, we define a−1 as the unique element b ∈ Zn such that ab = 1. Fractions

such aas a

b
are also well-defined if the denominator b is an element of Z∗

n.

Another important fact is that the Chinese remaindering bijection preserves invert-
ibility. That is: if gcd(m,n) = 1, then the natural isomorphism from Zmn to Zm×Zn

is also a bijection from Z∗
mn to Z∗

m×Z∗
n.

A natural question is how many elements are in Z∗
n. Euler’s totient function defines

this quantity: ϕ(n) = |Z∗
n|. As observed earlier, if gcd(m,n) = 1, then there’s a

bijection between Z∗
mn and Z∗

m×Z∗
n, so that we have ϕ(mn) = ϕ(m)ϕ(n) in this case.

In particular, if n = pe1
1 . . .pek

k where the pis are distinct primes, then we have:
ϕ(n) =∏

i ϕ(pei
i).

If p is prime, then we can directly compute the totient function for a power of p. We
have: ϕ(pk) = pk−pk−1 = pk(1− 1

p
). Thus, we obtain:

Theorem 3.5 If n = pe1
1 . . .pek

k , then

ϕ(n) = n

(
1− 1

p1

)
. . .

(
1− 1

pk

)
.

We now present a generalization of Fermat’s little theorem.

Theorem 3.6 [Euler’s Theorem] If gcd(a,n) = 1, then aϕ(n) ≡ 1 (mod n). Equiva-
lently, if a ∈ Z∗

n, then aϕ(n) = 1 in Zn.

Proof. We generalize the second proof of Fermat’s little theorem. Consider the set
Z∗

n. Firstly, we claim that if a ∈ Z∗
n, then the sets aZ∗

n and Z∗
n are equal, as subsets

of Zn. To see this observe that if b ∈ Z∗
n, then ab ∈ Z)∗

n as well. Thus, aZ∗
n ⊆ Z∗

n.
Also, if b1, b2 are two distinct elements of Z∗

n, then ab1 ̸= ab2, because b1− b2 ̸≡ 0
(mod n) and gcd(a,n) = 1.

Let P = ∏
x∈Z∗

n
x, Q = ∏

x∈aZ∗
n

x. We have: P = Q and Q = aϕ(n)P (in Zn). Since
P ∈ Z∗

n, we may cancel P on both sides from the equation aϕ(n)P = P to obtain the
theorem statement. ■

Exercise 3.11 Find ϕ(360). ■

Exercise 3.12 Find the remainder when 71000 is divided by 360. ■

3.7 Order and primitive roots
Definition 3.1 We say that an element a ∈ Z∗

n has order d if ad ≡ 1 (mod n) and
ak ̸≡ 1 (mod n) for every positive integer k < d. We denote this by ordn(a).

3.8 Exercises 29

This definition is well-defined because if a ∈ Z∗
n, then aϕ(n) ≡ 1 (mod n), and thus

there must exist a smallest positive ineger d such that ad ≡ 1 (mod n).

As an example, we compute the orders of every element in Z∗
7.

a 1 2 3 4 5 6
ord7(a) 1 3 6 3 6 2

Observation 1 For every a ∈ Z∗
n, we have: ordn(a) divides ϕ(n).

Proof. We have aϕ(n) ≡ 1 (mod n). Let d = ordn(a) and suppose for contradiction
that d does not divide ϕ(n); then we can write ϕ(n) = qd+ r where 0 < r < d. Since
ad ≡ 1 (mod n), we obtain ar ≡ 1 (mod n), which is a contradiction to the definition
of d as the order. This proves the observation. ■

In particular, when p is prime and a ∈ Z∗
p„ we have ordp(a) divides (p−1).

Definition 3.2 We call an element a∈Z∗
n a primitive kth-root of unity if ordn(a) = k.

We call an element a ∈ Z∗
n a primitive root if ordn(a) = ϕ(n).

One reason that primitive roots are interesting is that their powers generate Z∗
n, that

is if g is a primitive root, then {g,g2, . . . ,gϕ(n)}= Z∗
n. To see this, note that if gi ≡ gj

(mod n), then gi−j ≡ 1 (mod n); this is not possible if i, j are distinct and less than
ϕ(n) (because ordn(g) = ϕ(n)).

Primitive roots exist only for some moduli; the relevant fact for us is that they exist
when n is prime.
Theorem 3.7 Let p be a prime. Then there is an element g ∈ Z∗

p such that
ordp(g) = p−1.

3.8 Exercises

4. Polynomials over Zn

4.1 The ring Zn[x]
4.2 Lagrange’s theorem

Theorem 4.1 Let p be a prime. Then a polynomial f(x) in Zp[x] has at most
deg(f) roots.

Proof. We prove this by induction on the degree of f , with linear polynomials
being the case case. We already noted that ax− b has a unique root in Zn when
gcd(a,n) = 1. Thus, if a ≠ 0 and a ∈ Zp, then the polynomial (ax− b) has exactly
one root.

Now assume that f(x) is a polynomial of degree d > 1 and assume inductively that
the statement of the theorem is true for all polynomials o degree less than d.

Let x0 be one root of f(x). By the remainder theorem for polynomials, we have:
f(x) = (x−x0)g(x). Now if x1 is a root of f , then it must be the case that x1 = x0
or g(x0) = 0. This is because in Zp, if ab = 0, we must have a = 0 or b = 0.

Thus the number of roots of f is at most one plus the number of roots of g, and
using the induction hypothesis, this value is at most 1+(d−1) = d.

Remark: Since x0 can be a multiple root of f , it may be cleaner/more rigorous
to first write f(x) = (x−x0)kh(x) for the largest value of k possible and use the
induction hypothesis on h(x). ■

4.3 Euclid’s algorithm and unique factorization for polyno-
mials
Let p be prime. Given two polynomials f(x),g(x) ∈ Zp[x], we may write

g(x) = f(x)q(x)+ r(x) (4.1)

32 Chapter 4. Polynomials over Zn

with deg(r(x)) < deg(f(x)). We remark that 4.1 does not always hold over Zn for n
composite, for example, if n = 4 and f(x) = 2x,g(x) = x.

The Extended Euclidean algorirthm thus works for polynomials in the same way
as for integers; the running time is linear in the degree of the polynomials and
polynomial in the size of the coefficients. In particular, it finds the gcd of two
polynomials, which we define below.

Definition 4.1 Given two polynomials f(x),g(x) ∈ Zp[x], we define the greatest
common divisor (gcd) of f(x) and g(x) as the unique monic polynomial of largest
degree that divides f(x) and g(x).

Why is the monic polynomial of largest degree that divides both polynomials unique?
To see this, we may argue that if h(x) is one such polynomial and t(x) some polynomial
that also divides both f(x) and g(x), then t(x) must divide h(x). From this, the
desired conclusion may be drawn.

As a consequence of the Euclidean algorithm, we also deduce Bezout’s lemma for
polynomials.
Theorem 4.2 — Bezout’s Lemma. Let p be prime and f(x),g(x) be polynomials in
Zp[x]. Then there exist polynomials u(x),v(x) such that f(x)u(x) + g(x)v(x) =
gcd(f(x),g(x)). Further, the Euclidean algorithm finds u(x),v(x) such that
deg(u(x)) < deg(g(x)) and deg(v(x)) < deg(f(x)).

The final analog of natural numbers for polynomials is unique factorization. We say
that a polynomial f(x) ∈ Zp[x] is irreducible if f(x) = g(x)h(x) implies g(x) = 1 or
h(x) = 1.

Theorem 4.3 Every polynomial f(x) ∈ Zp[x] can be uniquely factorized into
irreducible polynomials.

An illustration of Euclid’s algorithm for f(x) = x3 +x,g(x) = 5x2−13x+6 over Z17:

A B r q u v s t
x3 +x 5x2−13x+6 −5x−14 7x+8 1 0 0 1

5x2−13x+6 −5x−14 0 −x+2 0 1 1 −7x−8
−5x−14 0 1 −7x−8 x−2 −7x2 +5x

Thus, the gcd of x3 + x and 5x2−13x + 6 in Z17[x] is (−5x−14)/−5 = (x−4). We
further have: (x3 + x)u(x) + (5x2− 13x + 6)v(x) = −5x− 14, where u(x) = 1 and
v(x) = (−7x−8).

4.4 The equations xd = 1 and xd = a in Zp

In this section, we assume that p is prime and state all results for Zp. We consider
solutions of the equation xd = a, which rest on the consideration of two "opposite"
cases: d|(p−1) and gcd(d,p−1) = 1.

Theorem 4.4 Let d|(p−1). Then the polynomial xd−1 has d distinct roots.

4.5 Application: The RSA Algorithm 33

Proof. We know that xp−1−1 has p−1 distinct roots, namely 1,2, . . . ,p−1. Further,
xp−1− 1 is divisible by xd− 1 because d|(p− 1). Thus, we can write xp−1− 1 =
(xd− 1)g(x) for a polynomial g(x) of degree p− 1− d. If (xd− 1) has less than d
roots, then the number of roots of the RHS would be at most d−1+deg(g) < p−1
(because of Lagrange’s theorem applied to g(x)), which is a contradiction. This
completes the proof. ■

We remark that if f(x) is a polynomial with deg(f) roots, then for every divisor g(x)
of f(x), the polynomial g(x) must have deg(g)) roots.

Theorem 4.5 Let gcd(d,p−1) = 1 and a ∈ Zp. Then the polynomial xd−a has a
unique root, which we can find efficiently.

Proof. Since gcd(d,p−1) = 1, we can find (efficiently) a positive integer k such that:

dk ≡ 1 mod (p−1).

Raising both sides of xd = a to the power k, we obtain xdk = ak and applying Fermat’s
little theorem, we get x = ak. ■

Combining the previous ideas, we can obtain the following corollary to Theorem 4.4.
Corollary 4.1 In Zp, the number of roots of xd−1 is equal to gcd(d,p−1).

The above result is obtained by finding k such that dk ≡ gcd(d,p−1) (mod (p−1))
and noting that xd = 1 raised to the power of k gives: xgcd(d,p−1) = 1, which has
gcd(d,p−1) solutions.

Exercise 4.1 Show that the number of roots of xd−a in Zp is either zero or equal
to gcd(d,p−1). ■

Theorem 4.5 also generalizes as follows, with the theorem statement itself containing
the explanation.
Theorem 4.6 Let n ∈ N. If gcd(d,ϕ(n)) = 1 and gcd(a,n) = 1, then the equation
xd = a has a unique solution in Zn, given by x = ak, where dk ≡ 1 (mod ϕ(n)).

4.5 Application: The RSA Algorithm
The idea behind Theorem 4.6 is used in the RSA algorithm. The original RSA paper
is very readable; the link is here: Link to original RSA paper.

Sections 3,4 of the above paper can be skipped; after Section 2, just go to Section 5.

4.6 Exercises
Exercise 4.2 Find an upper bound for the worst-case time complexity of the
Euclidean algorithm for the gcd of two polynomials f(x),g(x) ∈ Zp[x] assuming
that their degrees are at most d. Express your bound in terms of d,p. ■

https://people.csail.mit.edu/rivest/Rsapaper.pdf

34 Chapter 4. Polynomials over Zn

Exercise 4.3 For each of the equations below, over Z67, decide whether it has a
solution, and find a solution if it has.

(i) x5 = 3

(ii) x3 = 2.

(iii) x2 = 3

(iv) x2 = 17

■

Exercise 4.4 Suppose that you are given as input a prime p, and polynomials
f(x),g(x), q(x), r(x) ∈ Zp[x] such that p(x), q(x) are irreducible.

Show that there is a polynomial h(x) ∈ Zp[x] such that h(x)≡ f(x) (mod q(x))
and h(x) ≡ g(x) (mod r(x)) and describe an efficient algorithm to find such a
polynomial. ■

Exercise 4.5 (a) Show that the polynomials x2 +1 and x2−2 are both irreducible
in Z11.

(b) In Z11[x]: Find a polynomial f(x) such that f(x)≡ x + 2 mod (x2 + 1) and
f(x)≡ 2x−3 mod (x2−2). ■

5. The Quadratic Equation in Zp

5.1 Quadratic Residues
The goal of this chapter is to solve the equation x2 = a in Zp, where p is prime. The
first question is whether, for a given a, it is solvable at all. To this end, we show the
following for the more general question of when a given element in Zp is a dth power.

Theorem 5.1 Let d|(p−1) and let a ∈ Zp. Then xd = a is solvable if and only if
a(p−1)/d = 1.

For arbitrary d, i.e. without the assumption that d|(p−1), we can still answer the
same question.

Corollary 5.1 Let d be a positive integer, and let a ∈ Zp. Then xd = a is solvable
if and only if ak(p−1)/gcd(d,p−1) = 1, where kd≡ gcd(d,p−1) (mod p−1).

5.2 Application: Coin Tossing over a telephone
Suppose that Alice and Bob would like to have a fair coin toss over a distance, such
as via telephone. How can they do this without either of them being able to gain an
unfair advantage? A solution to this based was suggested by Manuel Blum.

First, let’s consider the following abstract protocol:

1. Alice and Bob agree on a function f , whose domain is two- valued, say {H,T}.
2. Alice tosses a coin, say the result is x ∈ {H,T}.
3. Alice sends f(x) to Bob.
4. Now Bob calls Heads or Tails, let y be the value called by Bob.
5. Bob sends y to Alice.
6. Alice now sends x to Bob; both of them know x,y and know who has won the

toss.

The key properties required of the function f for the above protocol to work are:

36 Chapter 5. The Quadratic Equation in Zp

(a) Given the value of f(x), Bob cannot find out the value of x. This means that
f(H) must equal f(T), otherwise Bob can compute each of these two values and see
which one was sent by Alice.

(b) Alice shouldn’t be able to find x2 ≠ x1 such that f(x1) = f(x2); otherwise she
can always switch to the other value if needed.

The two properties appear to be negations of each other; however the idea is that
the two-valuedness of the domain is indirectly encoded.

The protocol suggested by Blum is the following.

1. Bob chooses two large primes p,q and sends their product n = pq to Alice.
2. Alice picks a random number x ∈ Zn; with high probability, x ∈ Z∗

n.
3. Alice sends y = x2 ∈ Zn to Bob.
4. Bob solves the equation x2 = y (with y being known and x being unknown)

separately in Zp and in Zq. Combining the solutions, Bob gets FOUR solutions
in Zn.

5. Now Bob calls one of the four values, say Bob calls z and sends it to Alice.
6. Alice now sends x to Bob.
7. Bob wins the toss if z = x or z =−x (in Zn), else Alice wins the toss.

Let’s see the two properties satisfied by the above protocol.

(a) Suppose the four square-roots of y in Zn are x,−x,x2,−x2. Given these four
values, Bob has exactly a 50% chance of guessing one of x,−x.

(b) Alice cannot switch to one of x2,−x2 because Alice cannot find the other pair
of square-roots without essentially factoring n. This is because if Alice did find the
value of x2, then she can factor n by finding gcd(x1−x2,n) and gcd(x1 +x2,n) which
would be the values p,q.

The security of the protocol thus depends on the hardness of factoring an integer.
Currently there is no known polynomial-time algorithm for factoring an integer and
it is believed that such an algorithm is unlikely. If the numbers p,q are large enough,
then Alice would need hundreds of years to factor n should she wish to do so.

5.3 The Legendre Symbol
The Legendre symbol is defined as follows, for a natural number a and prime number
p. If p does not divide a, then it is defined as:(

a

p

)
= +1 if x2 = a has solutions in Zp

=−1 otherwise

If p divides a, then it is defined as
(

a

p

)
= 0.

By Theorem 5.1, we obtain the following:

Lemma 2 [Euler’s Criterion]
(

a

p

)
≡ a

(p−1)
2 (mod p).

5.3 The Legendre Symbol 37

The numbers a∈Zp such that
(

a

p

)
= 1 are called quadratic residues and the numbers

a ∈ Zp such that
(

a

p

)
=−1 are called quadratic non-residues.

We now use Euler’s criterion in the following exercises.

Class Exercises:

1. Find
(
−1
p

)
for the following values of p: 3,5,7,11,13.

Solution: We compute −1(p−1)/2 for each prime. We see that the above
quantity is 1 if and only if (p−1)/2 is even, i.e. if p≡ 1 (mod 4). Thus, we get
the following.

p

(
−1
p

)
3 -1
5 1
7 -1
11 1
13 1

2. Find
(

2
p

)
for the following values of p: 5,7,11,17.

Solution: We compute 2(p−1)/2 for each prime.
(a) p = 5: 22 ≡−1 (mod 5).
(b) p = 7: 23 ≡ 1 (mod 7).
(c) p = 11: 25 ≡−1 (mod 11).
(d) p = 17: 28 = 162 ≡ 1 (mod 17).
Thus, we get the following.

p

(
2
p

)
5 -1
7 1
11 -1
17 1

3. (a) Does the equation x3 ≡ 2 (mod 19) have solutions?
(b) Does the equation x3 ≡ 2 (mod 17) have solutions?
Solution:
(a) We have p = 19 and 3|(p−1). So we compute 2(p−1)/3, i.e. 26 ≡ 64≡ 7
(mod 19). Thus, this equation does not have solutions.
(b) We have p = 17 and gcd(3,16) = 1. Thus, there is a unique solution, given
by x≡ 2k (mod 17), where 3k ≡ 1 (mod 16).
More generally, given an arbitrary d, to check whether xd = a has solutions, we
first find k such that dk ≡ gcd(d,p−1) (mod p−1), and then check whether
the equation xgcd(d,p01) = ak has solutions.

4. Given the values of
(

a

p

)
and

(
b

p

)
, find the corresponding values of

(
ab

p

)
.

38 Chapter 5. The Quadratic Equation in Zp

Solution: Because of Euler’s criterion, we find that
(

ab

p

)
=
(

a

p

)(
b

p

)
. Thus,

we get the following.(
a

p

) (
b

p

) (
b

p

)
1 1 1
1 -1 -1
-1 1 -1
-1 -1 1

5.4 The equation x2 = a: Two easy cases
5.4.1 p≡ 3 (mod 4)

When p ≡ 3 (mod 4), we can solve x2 = a in Zp directly, as the following exercise
illustrates.

Exercise 5.1 Solve x2 = a in Z79, assuming that it has solutions. ■

Solution: Since a is a quadratic residue, we must have: a39 ≡ 1 (mod 79). Multiply-
ing by a on both sides, we get a40 ≡ a (mod 79), so that x = a20 is a square-root of
a.

The above idea generalizes for any prime p ≡ 3 (mod 4) because the condition
a(p−1)/2 ≡ 1 (mod p) is equivalent to a(p+1)/2 ≡ a (mod p) and (p+1)/2 is even when
p≡ 3 (mod 4).

Thus, in this case, a(p+1)/4 is a square-root of a.

5.4.2 p≡ 1 (mod 4), a =−1
A key idea that we will use is that we can find a quadratic non-residue; for this we
can simply sample a random element a and check if a(p−1)/2 ≡−1 (mod p), as half
of the elements in Zp are quadratic non-residues. By sampling several elements, we
can ensure that the probability of success is high.
Lemma 3 There’s an efficient randomized algorithm that finds b ∈ Zp such that(

b

p

)
=−1 with high probability.

In particular, once we find such a b, notice that b satisfies b(p−1)/2 =−1 and if p≡ 1
(mod 4), then b(p−1)/4 is a square-root of -1.

5.5 Wilson’s theorem and the value of
2
p


Theorem 5.2 Let p be a prime. Then (p−1)!≡−1 (mod p).

Proof. It is possible to prove this in several ways. One proof idea is to note that
the numbers in {1,2, . . . ,p− 1} may be paired up as (a,a−1), except for 1,(p− 1)

5.6 Quadratic Reciprocity 39

which are their own inverses. The product of each pair is 1, and the product of the
remaining elements is -1.

Another proof idea is to observe that xp−1− 1 = (x− 1) . . .(x− p + 1) because of
Fermat’s little theorem. Comparing the constant term gives the result. ■

Using Wilson’s theorem, we derive the following which we shall use in computing(
2
p

)
.

Claim 4 Let r =
(

p−1
2

)
!. Then r2 ≡−1 (mod p) if p≡ 1 (mod 4), and r2 ≡ 1 (mod

p) if p≡ 3 (mod 4).

Proof. Writing p−1 =−1,p−2 =−2, . . . ,(p+1)/2 =−(p−1)/2, we obtain, (p−1)! =
r2(−1)(p−1)/2. From this and Wilson’s theorem, the claim follows. ■

We now give the value of
(

2
p

)
.

Theorem 5.3 Let p be an odd prime. If p ≡ ±1 (mod 8), then 2 is a quadratic
residue modulo p, otherwise, 2 is a quadratic non-residue modulo p.

Proof. All calculations are in Zp. We write (p−1)! = ST , where S = 1×3× . . .×(p−2)
and T = 2×4× . . .× (p−1). We note that T = 2(p−1)/2

(
p−1

2

)
!. Also, we rewrite

S by writing each value p−x in the second half of the product as −x to obtain:
S =

(
p−1

2

)
!(−1)⌊(p−1)/4⌋. Letting r =

(
p−1

2

)
! and substituting for S,T , we get:

(p−1)! = 2(p−1)/2r2(−1)⌊(p−1)/4⌋.

The LHS is -1; on the RHS, we know the value of r2 from the previous claim. Thus
we get an expression for 2(p−1)/2, whose value we may obtain for each of the values
of p modulo 8. ■

5.6 Quadratic Reciprocity
One of the most interesting results about quadratic residues is that of the law of
quadratic reciprocity, proved by Gauss.
Theorem 5.4 — Law of quadratic reciprocity. If p,q are odd primes, then(

p

q

)
=
(

q

p

)
if p≡ 1(mod 4) or q ≡ 1(mod 4)

=−
(

q

p

)
if p≡ q ≡ 3(mod 4)

40 Chapter 5. The Quadratic Equation in Zp

For example, to calculate
(

3
97

)
, we can write:

(
3
97

)
=
(

97
3

)
=
(

1
3

)
= 1.

5.7 The Tonelli-Shanks Algorithm: Exposition from 2022
Before we describe the algorithm, we recall that the main idea in solving x2 = a
when p is a prime congruent to 3 mod 4 is that we had: am = 1, where m = (p−1)/2
is odd. By multiplying by a on both sides, we get am+1 = a and since m+ 1 is even,
a(m+1)/2 is a square-root of a.

This fails for primes of the form 1 mod 4; nevertheless a modification of the idea
works. We first illustrate this in the case that p is congruent to 5 mod 8.

5.7.1 p≡ 5 (mod 8)
Suppose that p≡ 5 (mod 8). Then, we can write p−1 = 4m, where m is odd. For
example, if p = 61, we can write p−1 = 4m with m = 15.

Consider the number am in Zp. If am = 1, then our earlier method works, i.e. a(m+1)/2

is a square-root of a. Suppose that am ̸= 1. We also know that a2m = a(p−1)/2 = 1.
This implies that am =−1. How can we use this information?

The key idea is to find a quadratic non-residue, i.e. a number r such that r(p−1)/2 =−1.
We can find a such an element by sampling random elements from Z∗

p and testing if
they satisfy the condition. Since at least half of the elements in Z∗

p are quadratic
non-residues, the probability of success is 1/2.
Lemma 5 Given a prime p, there is an efficient randomized algorithm to find an
element r ∈ Zp such that r is quadratic non-residue, i.e. r(p−1)/2 =−1.

In particular, for our current example, we have: r2m = −1. This means that
(ar2)m = 1. Multiplying by a on both sides we obtain: am+1r2m = a. Now the LHS
has both exponents even so that we find a(m+1)/2rm as a square-root of a.

Example: Let p = 61 and a = 3. By quadratic reciprocity, we know that
(

3
61

)
=(

61
3

)
= 1.

We have p−1 = 4m with m = 15. We find am = 315 =−1. We also know from our
earlier calculations that 2 is a quadratic non-residue when p≡ 5 (mod 8). Thus we
set r = 2. We have r2m = 230 =−1, thus 315 ·230 = 1. Multiplying by 3 on both sides,
we obtain 38 ·215 = 8 as a square-root of 3. The other square-root is −8 = 53.

To summarize, when p≡ 5 (mod 8), we have two cases.

If am = 1, then a(m+1)2 is a square-root.

If am =−1, then a(m+1)/2 ·2m is a square-root.

5.7 The Tonelli-Shanks Algorithm: Exposition from 2022 41

5.7.2 The general case
Given an odd prime p, we write p−1 = 2tm, with m odd. Given a number a ∈ Zp

whose square-root we wish to find, the key idea is to find a number b such that

(ab2)m = 1.

By multiplying by a on both sides, we then find a(m+1)/2bm as a square-root of a.

How can we find such a b? Let’s first consider the powers am,a2m, . . . ,a2t−1m = 1.
Let k be the least non-negative integer such that a2km = 1. If k = 0, then we are done
(with b = 1), otherwise let a1 = are, where r is a quadratic non-residue modulo p and
e = 2t−k. Then we have a2k−1m

1 = 1. We now find the smallest non-negative integer
k1 such that a2k1m

1 = 1; note that k1 < k. By repeating this process, we obtain a
sequence of values a0 = a,a1, . . . ,al where ai+1 is of the form ai+1 = air

ei with ei

being an even non-negative integer and am
l = 1.

Before describing the algorithm formally, we illustrate it with an example.

Example: Solve the equation x2 = 2 in Z97.

Solution: We have a = 2,m = 3 and we find:

a3 = 8,a6 = 64,a12 = 22,a24 =−1,a48 = 1.

We now find r such that r is a quadratic non-residue modulo 97. r = 5 works (as
can be checked using quadratic reciprocity, for example).

We now that r48 =−1, thus we set a1 = ar2 so that a24
1 = 1. Thus, a1 = 2×25 = 50.

Now we compute a3
1 = 64,a6

1 = 22,a12
1 =−1,a24

1 = 1. We set a2 = a1r4 so that a12
2 = 1.

Thus, a2 = 50×54 = 16.

We find a3
2 = 22,a6

2 =−1,a12
2 = 1 and we set a3 = a2r8 so that a6

3 = 1. Thus, a3 =
16×58 =−1.

Finally, we set a4 = a3r16 = 61 and we have a3
4 = 1. Thus, we get

(
ar2+4+8+16

)3
= 1.

From this, we find a square-root of a to be: a2r3+6+12+24, which is equal to 83.

Thus, the two square-roots are 14,83.

We now describe the algorithm formally. Since every computation involves a mth
power it is convenient to compute mth powers at the beginning of the algorithm
itself.

In the algorithm, findk(z) is a function that returns the least non-negative integer
k such that z2k = 1. This need not exist for every z ∈ Zp, but it exists for values z
which are mth powers (on which the function is invoked).

The invariant x2 = ab is maintained at the beginning and end of each iteration. The
values of b,k,S,x for our earlier example (a = 2,p = 97) would be as shown in the
table below (with r = 5).

42 Chapter 5. The Quadratic Equation in Zp

Algorithm 4 Tonelli-Shanks Algorithm
1: procedure Tonelli-Shanks(a,p) ▷ Finds x such that x2 = a in Zp

2: Write p−1 = 2tm with m odd.
3: b← am

4: k← findk(b)
5: if k=t then return Not a square.
6: end if
7: x← a

(m+1)
2 .

8: if k=0 then return x.
9: end if

10: Find r such that r
(p−1)

2 =−1.
11: s← rm

12: S← s2t−k

13: while k > 0 do
14: b← bS
15: x← xs2t−k−1

16: k← findk(b)
17: S← s2t−k

18: end while
19: return x
20: end procedure

b k S x
8 4 28 4
64 3 8 15
22 2 64 23
96 1 22 17
1 0 96 83

5.8 The Tonell-Shanks algorithm: Exposition of 2025 43

5.8 The Tonell-Shanks algorithm: Exposition of 2025
Given an odd prime p and a ∈ Zp, our goal is to solve the equation

x2 = a (5.1)

in Zp in polynomial time, i.e. time polynomial in logp.

Firstly, we check whether a(p−1)/2 = 1. If not, we report that the equation has no
solution.

Now, we write p−1 = 2tm, with m odd. Our first observation is that it is sufficient
to solve the equation y2 = am. Given a solution y to this equation, the solutions to

Equation 5.2 are: x =±a(m+1)/2

y
.

Thus, we now focus on solving the equation

y2 = b (5.2)

where b = am; further since a(p−1)/2 = 1, we have:

b2t−1
= 1 (5.3)

Our second idea is to find an element r ∈ Zp such that r(p−1)/2 =−1. To find such
an element, observe that (p−1)/2 elements in Zp satisfy the above relation; hence
we may sample random elements until one satisfies the above relation.

Now consider the element s = rm; this satisfies

s2t−1
=−1 (5.4)

We now show how to combine equations 5.3 and 5.4 to find a square-root of b. We
shall maintain inductively, an exponent e such that b2i = se, where e is divisible by
2i+1, with the initial values being i = t−1, e = 1. We aim to maintain such a relation
for the values of i down to zero. At i = 0, we have an expression for b as a square.

For the inductive step, note that b2i−1 = se/2 or b2i−1 =−se/2. In the first case, we
divide e by 2; in the latter case, we substitute for -1 using Equation 5.4 to obtain:
b2i−1 = s(p−1)/2+e/2; thus, in this case, we replace e with (e+p−1)/2.

An example: We solve the equation x2 = 2 in Z97. We first check that 248 = 1. We
have m = 3, t = 5 and b = 8. We store the value X = a(m+1)/2 = 4, to divide this by
the square-root of b later. We find that r = 5 satisfies r48 =−1 and set s = r3 = 28.

Thus we start with b16 = 1 and s16 =−1 with b = 8, s = 28.

We first compute b = 8, b2 = 64, b4 = 22, b8 =−1. We also compute s = 28, s2 = 8,
s4 = 64, s8 = 22. By chance, s itself happens to be a square-root of b; nevertheless
let’s run through the algorithm for now.

44 Chapter 5. The Quadratic Equation in Zp

Starting with b8 = s16, we check if b4 = s8 (yes); then we check if b2 = s4 (yes) and if
b = s2 (yes). Thus we find y = 28 and x =± 4

28 =±14.

Now let’s run through it again with a different value of r, say r = 7 which also
satisfies r48 =−1. Now we have s = 73 = 52 and s2 = 85, s4 = 47, s8 = 75, s16 =−1.

We have b8 = s16 but b4 =−s8 so that we write b4 = s24; now we find that b2 =−s12,
so we write it as b2 = s28 and finally we find that b = −s14 = s30, and we find
y =±s15 =±28 as before.

We now describe the algorithm formally.

Algorithm 5 Tonelli-Shanks Algorithm
1: procedure Tonelli-Shanks(a,p) ▷ Finds x such that x2 = a in Zp

2: Write p−1 = 2tm with m odd.
3: b← am ▷ We’ll solve y2 = b

4: Find B[j] = b2j for j = 0,1, . . . , i by repeated squaring until B[i] = 1.
5: if i=t then return Not a square. ▷ b2t = 1 and b2t−1 =−1
6: end if
7: x← a

(m+1)
2 . ▷ We’ll divide this by y.

8: if i=0 then return x. ▷ b = 1
9: end if

10: Find r such that r
(p−1)

2 =−1. ▷ Sample and check
11: s← rm

12: e← 2t ▷ Initialize b2i = se

13: while i > 0 do
14: if B[i−1] = se/2 then
15: e← e/2
16: else
17: e← e/2+(p−1)/2
18: end if
19: end while
20: Y ← sp−1−e/2 ▷ y = se/2; Y = y−1

21: return xY
22: end procedure

5.9 Hensel Lifting: From Zp to Zpk

We have seen one method to solve the quadratic equation in Zp; we will now see how
to extend this to solving quadratic equations in Zk

p for any given positive integer k.

By using the algorithm in the previous section we first find a solution b to x2 ≡ a
(mod p). To solve the equation x2 ≡ a (mod p2), we write x = py + b; this gives us:

(py + b)2 ≡ a(mod p2),

which is equivalent to:

2pby ≡−(b2−a)(mod p2).

5.9 Hensel Lifting: From Zp to Zpk 45

Writing b2−a = pc for an integer c (since p divides b2−a), and dividing by p, we get:

2by ≡−c(mod p).

For an odd prime p, we can now solve this equation as gcd(2b,p) = 1 (assuming
gcd(a,p) = 1).

The same method works for finding a solution modulo p2k given a solution modulo
pk; this is called Hensel Lifting. Thus, from a solution modulo p, we can find a
solution modulo pk using O(logk) calls to a linear-equation solver.

This method generalizes further to finding the roots of polynomials of arbitrary
degree as well as for factoring polynomials.

We illustrate this with a couple of examples:

Example 1: Solve the equation x2 ≡ 5 (modulo 361).

Solution: Note that 361 = 192. We first solve x2 ≡ 5 (modulo 19). We find 59 ≡ 1
(modulo 19) so that 5 is a quadratic residue. Multiplying by 5 on both sides, we
obtain 55 ≡ 9 modulo 19.

Now we write x = 19y +9 and substitute to obtain:

(19y +9)2 ≡ 5(mod 361).

That is:

18y ≡−4 (mod 19).

Solving this gives: y ≡ 4 (mod 19), so that x = 85 is a solution.

Example 2: Solve the equation x3 ≡ 3 (mod 289).

Solution: We have 289 = 172. We first solve the equation x3 ≡ 3 (mod 17). The
exponent 3 is co-prime to 16, so we first solve the auxiliary equation 3k +16l = 1,
which gives us k = 5, l =−1 as a solution. We now raise our congruence equation to
the 5th power on both sides to obtain:

x15 ≡ 35(mod 17).

Since x16 ≡ 1 (mod 17), this is equivalent to x≡ 1
35 (mod 17), which gives us x≡ 7

(mod 17).

Now we write x = 17y +7 to obtain:

(17y +7)3 ≡ 3(mod 289),

which is equivalent (after simplification) to

3×49×y ≡−20 mod 17.

From this we solve for y to find y ≡ 9 (mod 17), so that x ≡ 160 (mod 289) is a
solution.

46 Chapter 5. The Quadratic Equation in Zp

5.10 A second algorithm for finding square-roots
We know describe another method to solving the equation

x2 = a

in Zp.

The algorithm itself is easy to describe and is as follows.

Algorithm 6 Square-root Algorithm
1: procedure Find Square-root(a,p) ▷ Finds x such that x2 = a in Zp

2: Pick random r ∈ Zp.
3: if gcd(x2−a,(x− r)(p−1)/2−1) = (x− b) then return b,−b.
4: end if
5: end procedure

The gcd is found by repeatedly squaring (x− r)(p−1)/1 modulo (x2−a) (in Zp[x]).
Note that (sx + t)2 ≡ 2stx + s2a + t2 modulo (x2−a); this expression may also be
used to find the successive remainders.

If the gcd in step 2 is 1 instead, then we repeat the algorithm with another random
value of r, until success. The probability that the above algorithm succeeds is at
least 1/2.

Example: x2 = 10 in Z41

Solution: For r = 1, we find the gcd to be 1; for r = 2, the calculation is as follows,
the congruences being modulo (x2−10).

(x−2)2 ≡ 14−4x

(x−2)4 ≡ (14−4x)2 ≡ 28+11x

(x−2)8 ≡ (28+11x)2 ≡ x+26
(x−2)16 ≡ (x+26)2 ≡ 11x+30

Thus, (x−2)20 ≡ (11x+28)(11x+30)≡ 23x. The gcd of (x2−10) and (x−2)20−1
is gcd(x2−10,23x−1) = (x+16).

Thus the square-roots of 10 in Z41 are ±16.

5.11 Exercises
1. Solve x2 = 2 in Z289.
2. Describe an efficient method to decide whether a polynomial ax2 +bx+c∈Zp[x]

has solutions and how to find them.
3. Find the value of

(
510
1009

)
, given that 1009 is a prime.

6. Finite Fields

In this chapter, we study finite fields which are of importance in several areas of
computer science, such as coding theory, cryptography and complexity theory. This
will also lead us to a factorization algorithm for polynomials in Zp[x].

6.1 Groups
In abstract algebra, the most basic objects are groups.

Definition 6.1 A group is a pair (G,∗), where G is a set and ∗ is a binary operation
on G which satisfies all of the following properties.

(a) Closure: For all g,h ∈G, we have g ∗h ∈G.

(b) Associativity: For all g,h,k ∈G, we have: g ∗ (h∗k) = (g ∗h)∗k.

(c) Identity: There is a unique element e ∈G such that for all g ∈G, we have:
g ∗ e = e∗g = g.

(d) Inverse: For every element g ∈ G, there is an element h such that g ∗h =
h∗g = e. This element is usually denoted by g−1.

Examples of groups:

1. (R,+), (C,+), (Q,+), (Z,+), (Rn,+), (R[x],+)
2. (R\{0},×), (C\{0},×), (Q\{0}),×)
3. (Zn,+) (the cyclic group), (Z∗

n,×)
4. For every fixed n, the set of all n×n matrices over R under addition forms a

group.
5. For every fixed n, the set of all non-singular n×n matrices over R under

multiplication forms a group.
6. The set of all permutations of {1,2, . . . ,n} under composition forms a group;

this group is called the symmetric group and is denoted by Sn.
7. (R,∗) where a∗ b = a+ b+1.

48 Chapter 6. Finite Fields

Non-examples:

1. The set {0,1,2} under addition is not a group because it fails the Closure
property (a).

2. (R,−),(C,−) are not groups because they fail the Associativity property (b).
3. The pair (R,∗) with ∗ being defined as a∗ b = 1 is not a group because it fails

to have an Identity element.
4. (2S ,∪), (2S ,∩) are not groups because they fail the existence of an inverse for

every element.
5. The sets R,C,Zn are not groups under multiplication but note that we can

obtain groups from them by removing the elements without an inverse (Zero
in the first two cases, elements having a common factor with n in the third).

An important property of groups is cancellation and it follows from the existence of
inverses.
Observation 6 — Cancellation property. If (G,∗) is a group and a ∗ b = a ∗ c, for
elements a,b,c ∈G, then b = c. Similarly, if g ∗h = j ∗h for elements g,h,j ∈G, then
g = j.

6.1.1 Cayley Tables and Isomorphism
The Cayley table for a group (G,∗) is a matrix with rows and columns indexed by
the elements of G and the entry in row g and column h being the element g ∗h. The
Cayley table defines the operation ∗. From the cancellation property, it follows that
every row (similarly, every column) must contain all the elements of G exactly once
(in some order).

Here’s an example: we define a two-element group G = ({a,e},∗) (with e being the
identity element) using the following table:

∗ e a
e e a
a a e

Now consider the Cayley table of the group (Z2,+).
+ 0 1
0 0 1
1 1 0

We may notice that the tables of the two groups are identical except for a changing
of the element names (with 0 in place of e and 1 in place of a, + in place of *).
When this happens for two groups, we call them isomorphic. Here’s a more formal
definition.

Definition 6.2 Two groups (G,∗) and (H, ·) are said to be isomorphic if there
exists a bijection ϕ : G→H such that the following holds:

For every g1,g2,g3 ∈G, g1 ∗g2 = g3 if and only if ϕ(g1) ·ϕ(g2) = ϕ(g3).

Examples of isomorphism:

1. Every group of size 3 is isomorphic to (Z3,+).
2. The group of all nth roots of unity (under multiplication) is isomorphic to the

group (Zn,+). This group is also known as the cyclic group on n elements, and
is denoted by Cn.

6.1 Groups 49

6.1.2 Direct products and subgroups
We now look at two ways to construct new groups from existing groups.

Definition 6.3 Given two groups (G,∗) and (H, ·), the direct product of G and H
is the group consisting of G×H with the group operation being co-ordinate wise,
i.e. (g1,h1)× (g2,h2) = (g1 ∗g2,h1 ·h2).

It is easy to verify that G×H satisfies the definition of a group.

The direct product is useful to construct groups larger than (and containing)a given
group. In contrast, a group that is smaller than (and contained) in a given group is
called a subgroup.

Definition 6.4 We say that H is a subgroup of (G,∗) (written H ≤G) if H ⊆G
and (H,∗) is a group.

From this definition, it is not clear how to construct subgroups of a given group, but
one method is the following. Let S ⊆G. We define the group generated by S as:

< S >= {g1 ∗g2 ∗ . . .∗gk|k ∈ N and g1, . . . , gk ∈ S∪S−1}.

As in the case of direct product, we can easily verify that (< S >,∗) satisfies the
group axioms, and is hence a subgroup of G. Conversely, if H is a subgroup of G
and < S >= H, then we call < S > a generating set for H.

Examples of subgroups:

Group Subgroup(s)
(R,+) Q, Z
(Z,+) 2Z,3Z,4Z, . . .
(Z6,+) < 3 >= {0,3} ,< 2 >= {0,2,4}
(Z∗

p,×) Quadratic residues
(Z2×Z2,+) < (1,1) >= {(1,1),(0,0)}

GLn(R) SLn(R)

GLn(R): Real, invertible n×n matrices; SLn(R): Real n×n matrices with determi-
nant 1

6.1.3 Cosets and Lagrange’s theorem
In this section, we prove the following result, which is the main tool from group
theory that we will use.
Theorem 7 — Lagrange’s Theorem. Let G be a finite group and H be a subgroup of
G. Then |H| divides |G|. In particular, for all g ∈G, we have: g|G| = e.

Before we begin the proof, we first define cosets which we will need.
Definition 6.5 Given a group (G,∗) and a subgroup H of G, a left coset of H is a
set of the form g ∗H = {g ∗h|h ∈H} for g ∈G.

For example, for G = (Z,+) and H = 4Z, a coset is 3+H = {3+4k : k ∈ Z}. In fact,
there are exactly four left cosets, namely 4Z, 4Z+1, 4Z+2, 4Z+3. For example,
the coset 7+H is the same as 3+H.

50 Chapter 6. Finite Fields

Lemma 8 If (G,∗) is a group and H is a subgroup of G, then for all g,h ∈ G, we
have: g ∗H = h∗H or g ∗H ∩h∗H = ∅.

We first prove Lagrange’s theorem using the lemma (which we will prove subse-
quently).

Proof of Theorem 7: Lemma 8 implies that the left cosets of G form a partition of
G. Thus, we can write G = H ∪g1 ∗H ∪ . . .∪gr−1 ∗H for some g1, . . . ,gr−1.

Each coset has the same size, i.e. |H|. Thus, we obtain: r|H|= |G|, i.e. |H| divides
|G|, as desired.

The second part follows by considering the subgroup H = {a,a2, . . . ,ak = e} (for some
k ∈ N). We then have: k divides |G|, and hence a|G|= e. ■

6.2 Rings
Definition 6.6 A ring is a triple (R,+, ·) with +, · being binary operations on R,
satisfying the following properties.

1. (R,+) is an abelian group; its identity element is denoted by 0.
2. (R, ·) is associative and has an identity element which is denoted by 1.
3. For all a,b,c ∈R, we have: a · (b+ c) = a · b+a · c and (a+ b) · c = a · c+ b · c.

Examples of rings: In each example, the addition and multiplication are the
natural operators.

1. Z,R,C
2. Z[x], R[x]
3. Zn, Zn[x] (for every fixed n)
4. Zn[x]/(f(x)), i.e. the ring of polynomials in Zn[x] modulo f(x)
5. The ring of n×n real matrices (for each fixed n)

6.3 Fields
A field is a ring with the additional property that every non-zero element has a
multiplicative inverse.

Definition 6.7 A field is a triple (F,+, ·) with +, · being binary operations on R,
satisfying the following properties.

1. (F,+) is an abelian group; its identity element is denoted by 0.
2. (F \{0}, ·) is a group, whose identity element is denoted by 1.
3. For all a,b,c ∈ F , we have: a · (b+ c) = a · b+a · c and (a+ b) · c = a · c+ b · c.

Examples of fields: R, Q, C, Zp (p prime). Another important example for us will
be: Zp[x]/(f(x)), where f(x) is an irreducible polynomial in Zp[x].

Fields are highly structured objects with many nice properties. Here are two useful
ones:

6.4 Finite Fields 51

• If F is a field, then the Euclidean algorithm and Bezout’s Lemma work for
polynomials in F [x].

• If F is a field, then Gaussian elimination (and all of linear algebra) work over
F in the same way as for reals.

Theorem 6.1 If F is a field, then F [x]/(f(x)) is a field if and only if f(x) is an
irreducible polynomial in F [x].

Proof. Suppose that f(x) is an irreducible polynomial. Let g(x) ∈ F [x]/(f(x)) be
a polynomial of degree less than deg(f). Then gcd(g(x),f(x)) = 1 and in F [x],
we can apply Bezout’s Lemma to obtain polynomials u(x) and v(x) such that
f(x)u(x) + g(x)v(x) = 1. That is, g(x)v(x) ≡ 1 (mod (f(x))), so that g(x) has a
multiplicative inverse in F [x]/(f(x)). This shows that F [x]/(f(x)) is a field.

Conversely, suppose that f(x) is not irreducible, let f(x) = g(x)h(x) for a polynomial
g(x) of degree less than deg(f). Then g(x) does not have a multiplicative inverse in
F [x]/(f(x)) and hence F [x]/(f(x)) is not a field. This completes the proof. ■

6.4 Finite Fields
Facts about finite fields: Let q = pk where p is prime and k ∈ N.

1. There exists a finite field of size q; such a field may be constructed as Zp[x] (f(x))
for some irreducible polynomial of degree k in Zp[x].

2. Any 2 fields of size q are isomorphic. Thus, we often write Fq to denote the
field of size q.

3. F∗
q is cyclic.

4. For every a ∈ Fq, we have: aq = a.

6.5 Irreducible polynomials in Zp[x]
Theorem 9 In Zp[x], we have the following:

• (a): If f(x) is an irreducible polynomial of degree k, then f(x) divides xpk−x.
• (b): xpk −x =∏

d|k
∏{f(x) : f(x) is monic and irreducible, deg(f) = d}.

Proof. (a) Let q = pk. Then F [x]/(f(x)) ∼= Fq. Considering the polynomaial x as
an element of F [x]/(f(x)), we therefore have: xq−x = 0 (mod f(x)) which is the
desired statement.

(b) We first show that the RHS divides the LHS. Let f(x) be an irreducible polynomial
of degree d, with d|k, let k = rd. Then by part(a), we have: xpd ≡ x (mod f(x)).
Raising both sides to the pdth power we obtain xp2d ≡ xpd ≡ x (mod f(x)). Thus
inductively we obtain xpid ≡ x (mod f(x)) for every i; setting i = r, we get the
desired result. ■

For example, in Z3[x], we have: x9−x = x(x−1)(x−2)(x2−2)(x2 +x+2)(x2 +2x+
2).

52 Chapter 6. Finite Fields

6.6 Application: Secret sharing
There’s a secret S that has to be distributed to n persons; each person gets a share
and what we want is the following: if any k persons combine their share, then they
can recover the secret, but from any k−1 shares, zero information is obtained about
the secret. Such a scheme is called a k-out-of-n threshold scheme (k being the
threshold). We can imagine that a majority threshold (say 3-out-of-5) is relevant for
a consensus decision to recover the secret.

The following scheme is due to Shamir ("How to Share a Secret", 1979).

1. Encode the secret as an element of Fq for suitable q; if the secret is a sequence
of bits, then q may be a power of 2.

2. Generate k−1 random values of Fq: a1, . . . ,ak−1.
3. Construct the polynomial f(x) = a0 + a1x + . . . + ak−1xk−1, where a0 is the

secret.
4. Generate n distinct values x1, . . . ,xn ∈ Fq and compute yi = f(xi) for each i.
5. The pair (xi,yi) is the share of the ith person.

Explanation: Given k pairs (xi,f(xi)), it is possible to recover all the coefficients of
f(x), as there are k unknowns (the coefficients) and k linear equations. In particular,
the coefficient a0, which is the secret, can be obtained.

With k− 1 shares/equations, the system of equations results in a solution space
which is a 1-dimensional affine subspace of Fk

q and each of the q values is equally
likely for a0.

7. Polynomial Factorization over Zp

In this chapter, we’ll see the Cantor-Zassenhaus algorithm for factoring univariate
polynomials in Zp[x].

We divide the algorithm into three components/phases and finally combine them
together into a single algorithm.

In the first phase, given a polynomial f(x) ∈ Z[x], we’ll obtain a polynomial g(x)
which is the square-free part of f(x). The square-free part of a polynomial is defined
as follows. Let f(x) = h1(x)e1 . . .hk(x)ek with hi(x) being distinct irreducibles and
eis being natural numbers. Then the square-free part of f(x) is the polynomial
g(x) = h1(x) . . .hk(x).

In the second phase, we’ll partition the square-free polynomial g(x) into f1(x)f2(x) . . .fr(x),
where fi(x) is the product of all monic irreducible factors of g(x) that have degree
equal to i.

In the third phase, we’ll factor each fi(x) into irreducible factors of degree i.

Finally, for each irreducible factor h(x) that divides f(x), we find the largest natural
number r such that h(x)r divides f(x).

We now describe algorithms for each of the three phases.

7.1 Phase 1: Finding the square-free part
The main idea behind finding the square-free part is the following claim.
Claim 10 Let f(x) ∈ Zp[x] be such that f(x) is not divisible by h(x)p for any
polynomial h(x) of degree at least one. Then the square-free part of f(x) is given by

f(x)
gcd(f(x),f ′(x)) .

Notice that if f(x) = h(x)pg(x), then f ′(x) = h(x)pg′(x); thus we are unable to use
the above idea to find the square-free part of h(x) if h(x)p divides f(x).

54 Chapter 7. Polynomial Factorization over Zp

To deal with this issue, we do the following: we first obtain the largest degree
polynomial h(x) such that h(x)p divides f(x), then find the square-free part of h(x)
recursively. We then multiply this by the square-free part of g(x) to obtain the
square-free part of f(x).

For the first step in the above idea, we use the following claim.
Claim 11 Let f(x) ∈ Zp[x] and let h(x) be the largest degree polynomial such
that f(x) is divisible by h(x)p. Then there exists k such that f (k)(x) = h(x)p and
f (k+1)(x) = 0. Here f (j)(x) denotes the jth derivative of f(x).

To check whether a given polynomial in Zp[x] is a pth power and to finds its pth
root, we will use the following observation.
Claim 12 Let f(x) = ∑d

i=0 aix
i ∈ Zp[x]. Then f(x) is equal to g(x)p for some

polynomial g(x) if aand only if: for every i, ai ̸= 0 implies p|i. Further, in this case,
the polynomial g(x) equals ∑p|i aix

i/p.

We now have all the ingredients to find the square-free part of a given polynomial
f(x) ∈ Zp[x].

Algorithm 7 Algorithm to find square-free part of f(x) ∈ Zp[x]
1: procedure Square-free Part(f(x),p)
2: g(x)← f(x), F (x)← f(x)
3: while g(x) ̸= 0 do
4: h(x)← g(x), g(x)← g′(x)
5: end while
6: if h(x) ∈ Zp then
7: Return f(x)/gcd(f(x),f ′(x))
8: end if
9: F (x)← F (x)/h(x)

10: if h(x) = H(xp) then
11: h(x)←H(x)
12: h(x)← SQUARE-FREE PART(h(x),p)
13: end if
14: F (x)← h(x)F (x)/gcd(F (x),F ′(x))
15: Return F (x)
16: end procedure

7.2 Phase 2: Distinct-degree factorization
In this phase, we now have a polynomial which is square-free. Our goal is to factorize
it as f1(x) . . .fr(x), where fi(x) is the product of all irreducible factors of the given
polynomial of degree i.

The idea behind this algorithm is to use Theorem 9. Since the only irreducible
polynomials that divides xp−x are those of degree one, gcd(f(x),xp−x) gives us
f1(x). Note: Here, f(x) is an input polynomial which is square-free, and corresponds
to the output g(x) of the first phase rather than to the original input polynomial.

Repeating this idea, suppose that we have found f1(x), . . . ,fi(x). Then fi+1(x) =

7.3 Phase 3: Finding irreducible factors of degree i 55

gcd

(
f(x)

f1(x) . . .fi(x) ,xpi+1−x

)
. We note that in finding the gcds, we shall use re-

peated squaring for the power of x and subsequently apply the Euclidean algorithm.

Algorithm 8 Distinct-degree factorization
1: procedure Distinct-degree Factors(f(x),p) ▷
2: #: Finds f1(x),f2(x), . . . where fi(x) is the product of monic irreducible factors

of f(x) of degree i in Zp[x]. ▷
3: Assumes that f(x) is square-free.
4: i← 1, g(x)← f(x).
5: while g(x) ̸= 1 do
6: fi(x)← gcd(g(x),xpi−x).
7: g(x)← g(x)/fi(x).
8: i← i+1.
9: end while

10: Return {f1(x),f2(x), . . .}.
11: end procedure

7.3 Phase 3: Finding irreducible factors of degree i

In this stage, our goal is to solve the following problem. Given a polynomial fi(x),
all of whose irreducible factors have the same degree, i, find those factors. There are
two ideas that we will use for this phase, and they are the content of the following
two results.
Theorem 13 — Chinese Remainder Theorem for polynomials. If h(x) = h1(x) . . .hk(x),
where the hi(x)s are pairwise co-prime polynomials in Zp[x], then:

Zp[x]/(h(x))∼= Zp[x]/(h1(x))× . . .×Zp[x]/(hk(x)).

Claim 14 If h(x) is an irreducible polynomial of degree i and g(x) is a randomly
chosen non-zero polynomial of degree less than i in Zp[x], then:

Prob[g(x)(pi−1)/2 ≡ 1(mod h(x))] = Prob[g(x)(pi−1)/2 ≡−1(mod h(x))] = 1
2 .

Let fi(x) be a polynomial with an unknown factorization fi(x) = h1(x) . . .ht(x),
where each hj(x) is irreducible of degree i. Consider a polynomial g(x) of degree less
than fi(x), chosen uniformly at random. By Theorem 13, g(x) modulo hj(x) will be
a uniformly-at-random element of Z[x]/hj(x), for every j. Applying Claim 14, for
each j, the probability that hj(x) divides gcd(g(x)(pi−1)/2−1) is 1/2. Further these
events (various hj(x)s dividing this gcd) are mutually independent. Thus, if t≥ 2,
then with probability at least 1/2, the above gcd will contain as factors some and
not all of the irreducible factors of fi(x), which gives us a non-trivial factorization of
fi(x). We can then recursively factorize each of the two factors thus obtained. The
algorithm just described is presented below formally.

Finally, for each h(x) in the list of irreducible factors obtained from Algorithm 9,
we find the largest exponent e such that h(x)e divides f(x). This completes the
description of the factorization algorithm for polynomials in Zp[x].

56 Chapter 7. Polynomial Factorization over Zp

Algorithm 9 Uniform-degree irreducible factorization
1: procedure IrreducibleFactors(f(x), i,p) ▷
2: #: Returns list of irreducible factors of f(x) of degree i in Zp[x] ▷
3: #: Assumes that f(x) is square-free and has only irreducible factors of degree i
4: if deg(f) = i then
5: Return {f}.
6: end if
7: h1(x)← 1, h2(x)← 1.
8: while (h1(x) == 1) OR (h2(x) == 1) do
9: Pick random g(x) ∈ Zp[x] of degree less than f(x).

10: h1(x) = gcd(f(x),g(x)(pi−1)/2−1).
11: h2(x) = f(x)/h1(x).
12: end while
13: List1← IRREDUCIBLEFACTORS(h1(x), i,p)
14: List2← IRREDUCIBLEFACTORS(h2(x), i,p)
15: Return List1∪List2.
16: end procedure

Remarks: In the above descriptions, we assumed that p is an odd prime. If p = 2,
then a small change is needed in Phase 3; however we skip the details. This method
also:

1. works over any finite field (apart from Zp);
2. can be combined with Hensel lifting to factorize polynomials in Zpk ;
3. can be extended to factorize polynomials in several variables over a finite field.

8. Polynomial Factorization over Z

IIQuadratic Equations in Two Variables

9 Primality Testing: Before 2002 . . 61
9.1 Fermat and Mersenne primes 61
9.2 Testing Fermat’s little theorem 62
9.3 Fibonacci and Lucas pseudoprimality tests 63
9.4 The Miller-Rabin Test . 64

10 The Integer Factoring Problem . . 67
10.1 Trial Division and Fermat’s Method 67
10.2 Pollard rho Algorithm . 67
10.3 Dixon’s Algorithm . 69

11 Primality Testing: The AKS algo-
rithm . 73

11.1 A Polynomial Identity . 73
11.2 The Algorithm . 73
11.3 Correctness . 74

12 Quadratic Forms 77

9. Primality Testing: Before 2002

9.1 Fermat and Mersenne primes
Some of the largest primes known have been primes of the form ab±1. We consider
two such forms.

9.1.1 Primes of the form 2n +1
The 17th century mathematician Fermat noticed that all of the numbers 2+1,22 +
1,24 +1,28 +1,216+ are prime and he conjectured that all the numbers 22n +1 are
prime. But this turned out to be false. Euler showed in the 1700s that 232 + 1 is
divisible by 641, and modern computation has revealed only composite numbers
so far among numbers of the form 22n +1. Indeed, it is possible that the sequence
contains no further primes at all, although this hasn’t been proved either. Numbers
of the form 22n + 1 are called Fermat numbers and if they are prime, they are called
Fermat primes.

Let us see why it is necessary that n itself should be a power of 2 for 2n +1 to be a
prime.
Claim 15 If 2n +1 is a prime, then n is a power of 2.

Proof. Suppose for contradiction that n = ab, where a > 1 is odd. Then we have:
2n +1 = 2ab +1 = (2b)a +1, which is divisible by 2b +1, because more generally if a is
odd, then xa +1 is divisible by (x+1) (using the remainder theorem for polynomials).
This contradicts the assumption that 2n +1 is prime. Therefore n cannot have any
odd divisors and must be a power of 2. ■

A factor of 232 +1: How did Euler find that 641 was a factor of 232 +1? Here’s an
observation: suppose that p|22n +1. Then by considering the order of 2 with respect
to p, we note that 2n+1 must divide p−1, i.e. p≡ 1 (mod 2n+1). Thus it is sufficient
to look for such factors. For n = 5, it is sufficient to look for numbers of the form

62 Chapter 9. Primality Testing: Before 2002

64k +1. We can speculate that Euler tested small divisibility for small values of k
and found a hit for k = 10.

Let’s prove that 641 does divide 232 + 1. We have: 10×26 ≡ −1 (mod 641), that
is: 5× 27 ≡ −1 (mod 641). Raising both sides to the fourth power, we obtain:
625×228 ≡ 1 (mod 641). Since 625 ≡ −16 (mod 641), we obtain: −232 ≡ 1 (mod
641) which is the desired claim.

9.1.2 Primes of the form 2n−1
Mersenne primes are primes of the form 2p−1 where p is a prime. As in the case of
Fermat primes, let us see why the restriction on the exponent is necessary.
Claim 16 If 2n−1 is prime, then n is prime.

Proof. Suppose for contradiction that n = ab where a,b > 1. Then 2n−1 = 2ab−1
is divisible by 2a−1 which is a proper divisor of 2n−1. This follows as in the case
of Fermat primes, from the more general divisibility of xab−1 by xa−1 using the
remainder theorem. Thus, we obtain a contradiction if n is composite and hence n
must be prime. ■

The largest explicit primes that we know are and have been Mersenne primes, and
the reason for this is that there is an algorithm running in time Õ(p2) time to check
whether 2p−1 is prime.

Some large values of p such that 2p − 1 is prime: 13466917 (record-holder in
2001),32582657 (record-holder in 2006), 57885161 (record-holder in 2013), 82589933
(current record-holder). These primes are also the record-holders for the largest
known prime for those years.

9.2 Testing Fermat’s little theorem
A natural candidate for primality test is Fermat’s little theorem, i.e. we can check
whether the relation holds for some values of a: an ≡ a (mod n). If n is prime, then
the above congruence should hold for every a. What if n is composite? For "most"
composites n, there will be "many" values of a for which the above congruence will
fail to hold. Unfortunately though, there do exist composite numbers n for which
the above relation holds for every a. Such numbers are called Carmichael numbers
and the smallest of them is 561.

Thus, a direct testing of Fermat’s little theorem is insufficient as a primality test,
nevertheless it is still at the basis of the two well-known primality testing algorithms:
the Miller-Rabin algorithm (Section 7.4) and the AKS algorithm (Chapter 9).

Further, Fermat’s little theorem can still show up the compositeness of many com-
posite numbers, which we make precise in the following claim.
Claim 17 Suppose that n is a composite number and let A = {Z∗

n|an−1 ≡ 1 mod n}.
Then A = Z∗

n or |A| ≤ |Z∗
n|/2.

If n is such that |A| ≤ Z∗
n/2, then picking random a ∈ Zn \ {0} and applying the

Fermat’s little theorem test will, with probability at least 1/2, show that n is
composite.

9.3 Fibonacci and Lucas pseudoprimality tests 63

To prove Claim 17, we observe that the set A is a subgroup of Zn∗ and combining
this with Lagrange’s theorem, the claim follows.

9.3 Fibonacci and Lucas pseudoprimality tests
The second primality testing idea we look at is also a pseudoprimality test, i.e. every
prime will pass the test, but some composites may also pass. In practice though,
such tests can be fast and can be combined with other tests (like Fermat’s little
theorem).

The Lucas sequence Un(a,b) is defined as:

U0 = 0,U1 = 1,Un = aUn−1 + bUn−2;

For each fixed value of a,b ∈ N, we get a sequence of natural numbers. When
a = 1, b = 1, we get the Fibonacci sequence Fn.

The polynomial fa,b(x) = x2 − ax− b is called the characteristic polynomial of
Un(a,b). We shall henceforth assume that a,b are fixed and write f(x),Un in place
of fa,b(x),Un(a,b).
Claim 18 Let α,β be the roots of f(x) and d = a2−4b. If d ̸= 0, then

Un = αn−βn

√
d

.

Claim 19 Let M =
[
a b
1 0

]
.

Then

Mn =
[

Un bUn−1
Un−1 bUn−2

]
.

In particular, we can compute Un modulo m in time poly(logn, logm) by using
repeated squaring on the matrix M .

We also note that the characteristic polynomial of M is also f(x), so that M2−
aM + bI2 = 0.

Let r =
(

d

p

)
, i.e. r = 1 if d is a square modulo p and r =−1 otherwise.

Theorem 9.1 Up−r ≡ 0 (mod p).

In particular, for the Fibonacci sequence Fn = Un(1,1), we have:
Corollary 9.1 If n is a prime, then n|Fn−1 if n≡±1 (mod 5) and n|Fn+1 if n≡±2
(mod 5).

The Lucas primality test: Fix a Lucas sequence U(a,b). Given an integer n, find

r =
(

d

n

)
; this is easier when d is a prime ≡ 1 mod 4. Then find Un−r mod n; if it is

64 Chapter 9. Primality Testing: Before 2002

zero, then n passes the test. When the sequence is Fn, the test is called Fibonacci
pseudo-primality test.

Proof. of Theorem 9.1: We consider the cases r = 1 and r =−1 separately.

Case 1: r = 1

We work in Zp. Let c ∈ Zp be such that c2 = d. Thus, both α,β are elements of Z∗
p

and we have αp−1 = βp−1 = 1; hence Up−1 = αp−1−βp−1

c
= 0.

Case 2: r =−1

Now we work in Zp[x] modulo (x2−d).

We have xp−1 = (x2)(p−1)/2 = d(p−1)/2 =−1. Now (a+x)p = ap +xp = a+xp = a−x;
hence (a+x)p+1 = a2−x2 = a2−d = 4b.

Similarly, (a−x)p = a+x and (a−x)p+1 = a2−x2 = 4b.

Thus, (a+x)p+1 = (a−x)p+1 (mod (x2−d)), i.e. Up+1 = 0.

This completes the proof of Theorem 9.1. ■

Remarks:

1. The calculations for Up−r (or for Vp−r) essentially come from the identity
(x+a)p = xp +a in Zp[x], where we further reduced the term xp modulo some
quadratic polynomial. Writing F (x) = (x+a)p and G(x) = xp +a, the Lucas
test verifies that F (x) = G(x) modulo some quadratic polynomial. This identity,
which is true only for primes, is the starting point of the AKS algorithm, which
checks that F (x) = G(x) modulo h(x) for a bunch of polynomials h(x).

2. It appears that we do not know any composite n≡±2 (mod 5), which passes
both the Fibonacci test as well as the test 2n−1 ≡ 1 (mod n); thus, performing
just these two tests should detect composites effectively for such values.
If you find such a composite n which does pass both tests, you win $620 with
$500 from Selfridge, and $20 from Pomerance. If you prove that no such
composite exists, you stilll win the same amount, with $500 from Pomerance,
and $20 from Selfridge. The remaining $100 comes from Wagstaff in both
cases.

9.4 The Miller-Rabin Test
The Miller-Rabin test is a randomized primality test that runs in polynomial time
and it was the first of this kind. It is based on the idea that if n has at least two
distinct prime factors p,q, then there are at least four distinct square-roots for 1 in
Zn, whereas if n is prime, then there are exactly two square-roots, namely −1,1, in
Zn.

We also know that if n is prime, then for a < n, we must have: an−1 ≡ 1 (mod
n). Thus, the idea is to consider the numbers a(n−1)/2,a(n−1)/4, . . ., until we find
a number c which is not equal to 1. If c ̸=−1, then we know that n is not prime.

9.4 The Miller-Rabin Test 65

However, it may also happen that c =−1 for composites n. The claim however is
that c ≠−1 with sufficiently large probability if n is composite and if a is a random
element of Zn.

We first describe the algorithm in detail.

Algorithm 10 Miller-Rabin Algorithm for primality testing
1: procedure Miller-Rabin Test(n)
2: If n > 2 is even, return COMPOSITE.
3: If n is a perfect power, return COMPOSITE.
4: Find t,m such that n−1 = 2tm with t≥ 1, m odd.
5: Pick random a ∈ {2, . . . ,n−1}.
6: If gcd(a,n) ̸= 1, return COMPOSITE.
7: b← am, i← 0, c←−1.
8: while i≤ t AND b ̸= 1 do
9: c← b, b← b2. ▷ Calculations in Zn

10: i← i+1.
11: end while
12: if b ̸= 1 then
13: return COMPOSITE.
14: end if
15: if c ̸=−1 then
16: return COMPOSITE.
17: end if
18: Return PRIME.
19: end procedure

9.4.1 Analysis of time complexity
Step 3: To check if n is a perfect power, it is sufficient if n is a kth power for
2 ≤ k ≤ log2 n. For every fixed k, this can be done by binary search. Thus the
time complexity of this step is at most O(log2 n) (excluding the complexity of the
arithmetic operations involved).

Step 4: The values of t,m can be found in O(log2 n) time.

Step 8: The number of iterations is at most t≤ log2 n.

The other steps have time complexity O(1), thus the overall time complexity is
O(log2 n) times the complexity of arithmetic operations in Zn, i.e. Õ(log3 n).

9.4.2 Analysis of correctness probability
The main claim is that the Miller-Rabin algorithm is correct with probability at least
1/2 on every input.
Claim 20 • If n is prime, then the algorithm will return PRIME.

• If n is composite, then the algorithm will return COMPOSITE with probability
at least 1/2.

Proof. If n is prime, then consider the values of c,b at the end of the while loop. If

66 Chapter 9. Primality Testing: Before 2002

the while loop terminates because b = 1, then the value of b must be equal to 1 and
c is a square-root of 1 in Zn. Further c ≠ 1 since the algorithm terminates the first
time that b becomes 1. Thus c =−1 and the algorithm goes to step 18.

If the while loop terminates because i = t, then by Fermat’s little theorem, the value
of b must still be 1 at the end of the while loop, because am2t = ap−1 ≡ 1 (mod p).
As before, the algorithm goes to step 18.

Now, suppose that n is composite. If n is a perfect power of a prime, then the
algorithm outputs COMPOSITE in step 3. Thus, suppose that n is composite and
has at least two prime factors. Let A = {s ∈ Z∗

n|sn−1 = 1}. If |A| ≤ |Z∗
n|/2, then

with probability at least 1/2, the algorithm will return COMPOSITE in line 13.
Otherwise, using Claim 17, we deduce that A = Z∗

n.

Let r ≥ 4 be the number of square-roots of unity in Zn. For d ∈ N, we define the set
Sd = {r ∈Z∗

n : rd = 1}. Note that Sd is a subgroup of Z∗
n and also that Sn−1 = A =Z∗

n.

We also have: if d = d1d2 such that gcd(d1,d2) = 1, then Sd is isomorphic to Sd1×Sd2 .
Thus, we get: Z∗

n = Sn−1 is isomorphic to S2t×Sm.

Consider the directed graph G = (V,E) where V = S2t and E = {(a,a2)|a∈ S2t}, with
calculations modulo n. Then the underlying graph of G is a tree (with a self-loop at
1); if we fix 1 as the root, then it is a rooted tree T with the parent of vertex a being
a2. Also by our deduction that Z∗

n is isomorphic to S2t×Sm, we find that the set
{am : ainZ∗

n} is equal to V .

Thus, in terms of the tree T , the algorithm picks a random vertex in V and traverses
up the tree until it reaches the root. For an element a∈ V , let T (a) denote the subtree
rooted at a. To show that the algorithm returns COMPOSITE with probability at
least 1/2, we must show that |T (−1)| ≤ |V |/2.

The root vertex has d−1 children, let them be a1 =−1,a2, . . . ,ad. Ever other node
in the tree has either zero children (if it is not a square in Zn) or d children (if it is a
square in Zn). Since d ≥ 4, if we show that the height of T (ai) is greater than or
equal to the height of T (−1) for each i≥ 2, this would imply that |T (−1)| ≤ |V |/3.

Let T (−1) have height k. That is, there exists an element α ∈Zn such that α2k =−1.
Let n = pe1

1 . . .per
r . Let ϕ be the natural isomorphism from Zn to Zp

e1
1
× . . .×Zper

r
,

i.e. ϕ(x) = (x1, . . . ,xr) where x ≡ xi (mod pei
i). Notice that ϕ(−1) = (−1, . . . ,−1),

whereas for i≥ 2, ϕ(ai) is a tuple consisting of 1s and -1s, with at least one -1 and
at least one 1. Suppose that ϕ(α) = (α1, . . . ,αr). Let β be such that ϕ(β)j = αj

whenever ϕ(ai)j = 1 and let ϕ(β)j = 1 whenever ϕ(ai)j =−1. Then we can observe
that β2k = ai. Thus, the height of T (ai) is greater than or equal to the height of
T (−1). This shows that |T (−1)| ≤ |V |/3 and completes the proof of Claim 20.

■

10. The Integer Factoring Problem

10.1 Trial Division and Fermat’s Method
The simplest method of factoring a given integer n is trial division, which is to divide
by each number a ∈ {2, . . . ,n−1}. The time complexity of this method is Õ(

√
n).

In later sections, we will see factoring algorithms which are asymptotically faster,
but we first see an alternative method to trial division, whose worst-case complexity
is however Θ(n).

A simple observation that can help factor the number 323 is that 323+1 = 324 = 182.
Hence, 323 = 182−1 = 17×19. More generally, suppose that we consider the numbers
n+12,n+22, . . . until we find a perfect square. Then we have: n+a2 = b2 and we get
the factorization n = (b−a)(b+a). This idea is called Fermat’s method, and it can
be effictive if n = AB with A,B very close to each other. For such a factorization,
the corresponding a,b are a = (B−A)/2, b = (B + A)/2, thus the number of steps
is (B−A)/2. The worst-case complexity of this method is Θ(n), but it may be a
useful test in combination with trial division and can be stopped in case we don’t
find a factor after some threshold number of steps.

10.2 Pollard rho Algorithm
In 1975, J. Pollard came up with an interesting algorithm that takes O(n1/4) time
to find a factor of n (if it exists) with high probability.

There are two ideas behind the Pollard rho algorithm, which we first explain.
Lemma 21 If we pick a random sequence a1,a2, . . . ,ak with each ai being indepen-
dently chosen from {1,2, . . . ,N}, and if k = 4

√
N , then the probability that there

exist i < j with ai = aj , is at least 0.6.

The above lemma is a generalization of the so-called birthday paradox, which is that
if we pick 23 people randomly, then with probability more than 1/2, there will be two
people with the same birthday (assuming independence of birthdays). We skip the

68 Chapter 10. The Integer Factoring Problem

proof of the lemma but we note that an exact expression for the desired probability
is 1− (N −1)(N −2) . . .(N −k +1)

Nk
.

Lemma 22 Given a function f : {0,1, . . . ,N −1}→ {0,1, . . . ,N −1} and a sequence
a1, . . . ,am where ai = f(ai−1) for every i≥ 2, there’s an algorithm which can test in
O(m) time whether there exist distinct i, j such that ai = aj and further find such
i, j if they exist.

Proof. The problem described in the statement is known as the cycle detection
problem and the solution that we will describe is known as Floyd’s cycle detection
method.

Let j be the least index such that aj is equal to some previous element, say ai,
and let L = i− j +1. Then for every k ≥ i, we have ak = ak+L, while the elements
a1, . . . ,ai−1 appear only once in the sequence. Note that even though the sequence
given to us is only the first m elements, the elements am+1, . . . are also well-defined
by the relation ai = f(ai−1).

We claim that there exists t ≤m such that at = a2t. Let t = i + T . Then at = ar

where r = T%L and a2t = as, where s = (i+2T)%L. Thus, if T ≡ i+2T (modulo L),
then we have at = a2t, and this certainly happens when T ≡−i (mod L), i.e. when t
is of the form t = qL.

Now, we describe the algorithm. For t = 1,2, . . ., we consider the pair of elements
at,a2t in the tth iteration. If at ≠ a2t for t≤m, then we conclude that all the elements
are distinct.

Otherwise, the least t for which at = a2t must be the value of L We may know
find the value of i in any number of ways, for example, by considering the pairs
(at−1,a2t−1),(at−2,a2t−2) etc until the values in the pair are different.

The number of iterations in this algorithm is at most 2L≤ 2m; this completes the
proof of the lemma. ■

Algorithm 11 Pollard rho algorithm
1: procedure Pollard rho(n)
2: m← ⌈4n1/4⌉
3: Pick a1, r ∈ {1,2, . . . ,n−1} uniformly at random.
4: for i=2 to m do
5: ai← a2

i−1 + r. ▷ f(x) = x2 + r in Zn.
6: end for
7: if gcd(ai−aj ,n) /∈ {1,n} for some i, j then
8: Return gcd(ai−aj ,n) as a factor.
9: end if

10: end procedure

The time complexity of the algorithm is O(m) = O(n1/4), where we use Floyd’s
algorithm for Step 7. Suppose that n is composite and p is the least prime factor of
n. Then p≤

√
n and hence by Lemma 21, with probability at least 0.6, there exist

i, j such that ai ≡ aj (mod p) so that gcd(ai−aj ,n) ̸= 1 with probability at least 0.6.

10.3 Dixon’s Algorithm 69

10.3 Dixon’s Algorithm
The previous algorithms for factoring were exponential-time algorithms, as they had
time complexity of the form O(nc) = O(ec logn). We now look at a subexponential
time algorithm, of complexity eO(

√
logn log logn).

The main idea behind Dixon’s algorithm is to find two numbers α,β such that
α2 ≡ β2 (mod n). If α,β are also random, then we can expect that gcd(α−β,n) is a
non-trivial factor of n with good probability.

How can we find such α,β? Let us see an example. Let n = 8857. In the calculations
below are the values of some squares modulo n (the congruences written are modulo
n) and their factorizations.

952 ≡ 168 = 25×3×7 (10.1)
972 ≡ 552 = 23×3×23 (10.2)
1072 ≡ 2512 = 25×34 (10.3)
1732 ≡ 3358 = 2×23×73 (10.4)
2062 ≡ 7008 = 25×3×73 (10.5)
7422 ≡ 1430 = 2×5×11×13. (10.6)

Consider the equations (8.2),(8.3),(8.4),(8.5). Multiplying all of them, we obtain:

972×1072×1732×2062 ≡ 214×36×232×732 (mod n). (10.7)

Thus, we have α2 ≡ β2 (mod n), where α = 97×107×173×206≡ 768 (mod n) and
β = 27×33×23×73≡ 1289 (mod n). We find gcd(α−β,n) = 521 which is a divisor
of n.

Now we explain the idea. Firstly, we compute several random squares modulo n.
We then maintain a list of those which have prime factors only in {p1, . . . ,pk}, where
pi is the ith prime number and where the threshold k is fixed in advance. We also
maintain the list of their corresponding factorizations.

Let a number in the list have the factorization pe1
1 . . .pek

k . Consider the exponent
vector (e1, . . . , ek). A key idea is that if there are at least k +1 such exponent vectors,
then there must be a subset of them whose sum is an even number in every co-
ordinate. This is because the vector space Fk

2 can have at most k linearly independent
vectors.

We then multiply the corresponding relations; this gives us on the RHS a number
of the form p2f1

1 p2f2
2 . . .p2fk

k , which is a square. Thus, we can set β = pf1
1 . . .pfk

k . The
linear relation among the exponent vectors (modulo 2) can be found by Gaussian
elimination.

We know describe the algorithm in detail.

Analysis of running time and success probability:

70 Chapter 10. The Integer Factoring Problem

Algorithm 12 Dixon’s algorithm
1: procedure Dixon(n)
2: Fix B,m ▷ B = m = ⌈e4

√
logn log logn⌉.

3: Find PB = {p1, . . . ,pk}, the set of primes in {1,2, . . . ,B}.
4: Pick a1, . . . ,am ∈ {1,2, . . . ,n−1} uniformly at random.
5: L←∅, I ←∅.
6: for i=2 to m do
7: bi← a2

i . ▷ In Zn.
8: Divide bi by each prime in PB.
9: if bi is B-smooth then

10: vi← (ei,1, . . . , ei,k), where bi =∏k
j=1 p

ei,j

j .
11: Add (ai, bi,vi) to L; add i to I.
12: end if
13: end for
14: Find T ⊆ I such that ∑i∈T vi ≡ (0,0, . . . ,0) (mod 2). ▷ |T | ≤ k +1.

15: α←∏
i∈T ai; β←∏k

j=1 p

∑
i∈T

ei,j
2

j . ▷ α2 ≡ β2 (mod n)
16: Find n1 = gcd(α−β,n), n2 = n/n1 as possible non-trivial factors of n.
17: end procedure

We first analyze the running time of in terms of n,B,m without fixing the values of
B,m. We do not explicitly include the cost of arithmetic operations in Zn which we
know to be Õ(log2 n).

• Lines 1-5: O(m+B)
• Lines 6-13: O(mB)
• Line 14: O(k3) = O(B3) via Gaussian elimination; it turns out that this can

be improved to O(B2) by using the sparseness of the matrix.
• Lines 15,16: O(k +logn) = O(B +logn)

We thus find that the total time complexity is O(mB + B2) with some additional
poly(logn) factors. Next, we need to fix m,B as functions of n.

The probability that the algorithm succeeds is related to the probability of finding at
least k+1 numbers among a1, . . . ,am which are B-smooth, and further the probability
that the final congruence α2 ≡ β2 (mod n) gives us a non-trivial factor of n. We’ll
only focus on the first part.

Let S(n,B) denote the number of B-smooth numbers in {1,2, . . . ,n}. Then the
expected number of random elements we must pick in order to find k +1 numbers
that are B-smooth is (k +1)n

S(n,B) . Thus, the choice of m will be a constant multiple of

the above expression. We also need an estimate on S(n,B) which is given below.
Lemma 23 If B = n1/u, then S(n,B)∼ n

uu+o(1) .

Writing B = n1/u and applying the above expression, we get the running time in
terms of n,u to be:

T (n,u) = Õ
(
uu+1n2/u

)
.

10.3 Dixon’s Algorithm 71

Now we can find u that minimizes T (n,u) by taking logarithms and then differen-

tiating with respect to u. This gives us: logu− logn

u2 ∼ 0, so that u ∼
√

logn

log logn
.

Thus, we get the running time to be T (n) = Õ
(
e2

√
logn log logn

)
. This completes our

analysis of Dixon’s algorithm.

11. Primality Testing: The AKS
algorithm

In 2002, Manindra Agrawal, Neeraj Kayal and Nitin Saxenah came up with the first
(and only) known deterministic polynomial time algorithm. It is now commonly
referred to as the AKS algorithm.

11.1 A Polynomial Identity
The first key ingredient in the AKS algorithm is the following observation.
Lemma 24 Let a ∈ Z∗

n. Then n is prime if and only if

(x+a)n = xn +a (11.1)

holds in Zn[x].

Proof. ⇒: Let n = p be prime. Then in Zp[x], we have: (x+a)p = xp +∑p−1
i=1

(
p

i

)
+

ap = xp +a. The last equality follows from the fact that p divides
(

p

i

)
for 1≤ i≤ p−1

and from the fact that ap ≡ a (mod p).

⇐: Let n be composite with a prime factor p and let pk be the largest power of p

that divides n. Then the coefficient of xp in
(

n

p

)
is equal to n(n−1) . . .(n−p+1)

p!
which is divisible by pk−1 but not by pk. Thus this coefficient is non-zero in Zn, and
(x+a)n ̸= x+a. ■

11.2 The Algorithm
We now describe the AKS algorithm. The polynomial computation is in Zn[x].

74 Chapter 11. Primality Testing: The AKS algorithm

Algorithm 13 AKS algorithm
1: procedure AKS(n)
2: Test whether n is a perfect power. If yes, return COMPOSITE.
3: Find r ≤ ⌈16log5 n⌉ such that ordr(n) > 4log2 n.
4: for i = 1 to r do
5: If gcd(i,n) > 1, return COMPOSITE.
6: end for
7: k← ⌊2

√
r logn⌋.

8: for a = 1 to k do
9: If (x+a)n ̸≡ xn +a mod (xr−1) return COMPOSITE.

10: end for
11: Return PRIME.
12: end procedure

11.2.1 Running Time:
Step 3 can be done as follows: For each r ≤ 16log5 n, do the following: for each
d < 4log2 n, check whether nd−1 is not divisible by r. If it is not divisible for every
d, the corresponding r is chosen. The time complexity of this step is Õ(log8 n).

The other main contribution to the running time is lines 8-10; the number of
iterations is O(log3.5 n) and each computation can be done in Õ(log6 n) time (since
deg(xr−1) = O(log5 n)). Thus the total time complexity is Õ(log9 n).

11.3 Correctness
We will show that the algorithm returns PRIME if and only if n is prime. We will
also prove why r exists as in step 3.

If n is prime, then the algorithm clearly does not return COMPOSITE in lines 2,5.
It also does not return COMPOSITE in line 9 because of Lemma 24.

Suppose now that n is composite. If the algorithm does not return COMPOSITE in
line 2, then n must have at least two distinct prime factors; let p denote the least
prime factor of n.

Definition 11.1 Let r be a fixed positive integer. Let m ∈N, f(x) ∈ Zp[x]. We say
that the pair (m,f(x)) is introspective (with respect to p) if

f(x)m ≡ f(xm) mod(p,(xr−1)) . (11.2)

We denote by IP the set of all introspective pairs (with respect to p).

Examples:

• (1,f(x)) for every f(x),p,r;
• (p,f(x)) for every f(x),p,r;
• (m,x) for every m,p,r;
• (561,x+1) for p = 3,7,11 and r = 4.

The connection of this definition to the algorithm is that in line 9, we are checking

11.3 Correctness 75

whether the pair (n,x+a) is introspective.

Introspective pairs satisfy the following two multiplicative properties.
Claim 25 (a) Let (m1,f(x)) and (m2,f(x)) be introspective. Then (m1m2,f(x)) is
also introspective.

(b) Let (m,f(x)) and (m,g(x)) be introspective. Then (m,f(x)g(x)) is also intro-
spective.

We can now explain the broad proof strategy.

11.3.1 The Proof Strategy
The strategy behind the proof of correctness is the following: We will show that if
the algorithm does not return COMPOSITE in lines 8-10, then there are "many"
introspective pairs by using the multiplicative property.

On the other hand, we will argue that if there are too many of them, then for a
suitable polynomial of some degree m, there are more than m+1 roots. These roots
will correspond to the polynomials in the introspective pairs, and the polynomial
will be in a finite field, which gives the desired contradiction.

11.3.2 The Proof
Let I = {nipj |i, j ≥ 0} and let P = {∏k

a=1(x+a)ea}, where the exponents ea range
over all values in N∪{0}.

The following observation comes from the multiplicative properties of introspective
pairs and also uses the fact that the algorithm has not returned COMPOSITE in
lines 8-10.
Observation 26 For every m∈ I and every f(x)∈P , the pair (m,f(x)) is introspective.

The sets I,P are infinite; we first define some finite subsets of them. We define
G to be the set obtained by considering the values of I modulo r. Formally,
G = {a ∈ Zr : a ≡ i mod r for some i ∈ I}. Note that G is a subgroup of Z∗

r under
multiplication.

Let h(x) be an irreducible factor of xr − 1 of largest degree. We define R to
be the set obtained by considering the values of P modulo h(x). Formally, R =
{f(x) ∈ Zn[x]/(h(x)) : f(x)≡ g(x)mod h(x) for some g(x) ∈ P}. We note that R is
a subgroup of (Zn[x]/(h(x)))∗.

We now make three claims about the sizes of |G|, |R|.
Claim 27 Let t = |G|. Then t > 4log2 n.

Claim 28 |R| ≥
(

t+k−2
k−1

)
.

Claim 29 |R| ≤
(

n2

2

)√
t

.

Assuming the claims, the contradiction follows from Claims 28 and 29 after substitut-
ing the known bounds on t,r,k. We skip this calculation and instead give sketches
of the proofs of the claims.

76 Chapter 11. Primality Testing: The AKS algorithm

Proof. of Claim 27. Let d = ordr(n). Then the elements 1,n, . . . ,nd−1 are all distinct
modulo r and from line 3, we have: ordr(n) > 4log2 n. This proves the claim. ■

Proof. of Claim 28. Consider the polynomials in P of degree less than t. The number

of such polynomials is equal to
(

t+k−2
k−1

)
. All these polynomials are distinct modulo

h(x) if deg(h(x))≥ t. Thus it suffices to prove that deg(h(x))≥ t. This can be done
by considering the minimal polynomial of an element in Zr that generates G, but we
skip the details. ■

Proof. of Claim 29. Let Î = {nipj |0≤ i≤ j ≤ ⌊
√

t⌋}. We have |Î|> t and therefore
there exist distinct m1,m2 ∈ Î such that m1 ≡m2 (mod r).

Let f(x) be an arbirary polynomial in R. Since f(x) is introspective, we have:

f(x)m1 ≡ f(xm1)(mod h(x)) (11.3)
andf(x)m2 ≡ f(xm2)(mod h(x)) (11.4)

(11.5)

Also, since m1≡m2 (mod r), we have xm1 ≡ xm2 (mod xr−1), and hence: xm1 ≡ xm2

(mod h(x)).

Thus, we find that f(x)m1−f(x)m2 ≡ 0 (mod h(x)). Now consider F = Zp[x]/(h(x))
which is a field. Seeing f(x) as an element of F , we have that f(x) is a root of the
polynomial Y m1−Y m2.

Since F is a field, the polynomial Y m1−Y m2 has at most max(m1,m2) roots. Thus

|R| ≤max(m1,m2)≤ (np)
√

t ≤
(

n2

2

)√
t

. ■

With the proof of the claims, we have shown that if n is composite, then the algorithm
will return COMPOSITE.

We now consider the problem of showing that there exists r < 16log5 n such that
ordr(n) > 4log2 n. For this, we the following lemma is useful.
Lemma 30 Let n≥ 1 be a natural number. Then lcm(1,2, . . . ,n)≥ 2(n−1)/2.

Proof. Let L = lcm(1,2, . . . ,2n + 1), and let I =
∫ 1
0 xn(1−x)ndx. Then 0 < I <

1
4n

and LI is a positive integer. Thus, L > 4n, from which the statement in the lemma
may be obtained. ■

Let D = ⌊4log2 n⌋ and R = log5 n. Suppose that every r ∈ {1,2, . . . ,R} divides some
number nd−1 for d≤D. Then LCM(1,2, . . . ,R) must divide (n−1)(n2−1) . . .(nD−
1). Thus, LCM(1,2, . . . ,R)≤ n

D2
2 . Applying Lemma 30 for the LHS and substituting

for D, we may obtain the desired result.

This completes the proof sketch of the correctness of the AKS algorithm. ■

12. Quadratic Forms

	Preface
	I Polynomials in One Variable
	1 Two Equations from Ancient Times
	1.1 The Cubic Equation
	1.2 Fast Arithmetic Operations
	1.3 The Equation ax+by=c
	1.4 Notes and Further Reading
	1.5 Exercises

	2 The Fundamental Theorem of Arithmetic
	2.1 Prime numbers
	2.2 Euclid's lemma
	2.3 The fundamental theorem
	2.4 Notes and Further Reading
	2.5 Exercises

	3 Congruences
	3.1 Definition and properties
	3.2 Linear congruences and the Chinese Remainder Theorem
	3.3 Fermat's little theorem
	3.4 The ring Zn
	3.5 Arithmetic in Zn
	3.6 The set Zn* and Euler's totient function
	3.7 Order and primitive roots
	3.8 Exercises

	4 Polynomials over Zn
	4.1 The ring Zn[x]
	4.2 Lagrange's theorem
	4.3 Euclid's algorithm and unique factorization for polynomials
	4.4 The equations xd=1 and xd=a in Zp
	4.5 Application: The RSA Algorithm
	4.6 Exercises

	5 The Quadratic Equation in
	5.1 Quadratic Residues
	5.2 Application: Coin Tossing over a telephone
	5.3 The Legendre Symbol
	5.4 The equation x2=a: Two easy cases
	5.5 Wilson's theorem and the value of 2p
	5.6 Quadratic Reciprocity
	5.7 The Tonelli-Shanks Algorithm: Exposition from 2022
	5.8 The Tonell-Shanks algorithm: Exposition of 2025
	5.9 Hensel Lifting: From Zp to Zpk
	5.10 A second algorithm for finding square-roots
	5.11 Exercises

	6 Finite Fields
	6.1 Groups
	6.2 Rings
	6.3 Fields
	6.4 Finite Fields
	6.5 Irreducible polynomials in Zp[x]
	6.6 Application: Secret sharing

	7 Polynomial Factorization over Zp
	7.1 Phase 1: Finding the square-free part
	7.2 Phase 2: Distinct-degree factorization
	7.3 Phase 3: Finding irreducible factors of degree i

	8 Polynomial Factorization over Z

	II Quadratic Equations in Two Variables
	9 Primality Testing: Before 2002
	9.1 Fermat and Mersenne primes
	9.2 Testing Fermat's little theorem
	9.3 Fibonacci and Lucas pseudoprimality tests
	9.4 The Miller-Rabin Test

	10 The Integer Factoring Problem
	10.1 Trial Division and Fermat's Method
	10.2 Pollard rho Algorithm
	10.3 Dixon's Algorithm

	11 Primality Testing: The AKS algorithm
	11.1 A Polynomial Identity
	11.2 The Algorithm
	11.3 Correctness

	12 Quadratic Forms

