
CS5120: Probability & Computing Jan-May 2020

Markov Chains 2

1 Expected time on a path

We consider the path graph on V = {v0, v1, . . . , vn}, with the edge-set being
{v0v1, v1v2, . . . , vn−1vn}. Suppose that we start a random walk at v0. What
is T0n, the expected number of time-steps to reach vn from v0?

In the following, we answer this question as well as for the case when the
walk is biased, that is: for every i ≥ 1, the probability of moving from vi to
vi+1 is p and the probability of moving from vi to vi−1 is 1− p. Even in the
general model, we will assume that the probability of moving from v0 to v1
is equal to one.

Proposition 1

1. For p = 1/2, we have: T0,n = n2.

2. For p > 1/2, we have: T0,n = Θ(n).

3. For p < 1/2, we have: T0,n = Θ
(
cnp
)
, where cp =

1

p
− 1.

Proof We consider the �rst case, that is: p = 1/2. For i, j, let Tij denote
the expected number of steps to reach from i to j, and we use the convention
that Tii = 0.

By calculation, we can �nd that T01 = 1, T02 = 4, T03 = 9; this leads to the
guess that T0n = n2. We have:

Ti,i+1 =
1

2
(1) +

1

2
(1 + Ti−1,i+1) and since Ti−1,i+1 = Ti−1,i + Ti,i+1, we get:

Ti,i+1 = 1 +
1

2
(Ti−1,i + Ti,i+1). This simpli�es to: Ti,i+1 = Ti−1,i + 2. This

recurrence along with T0,1 = 1 implies that Ti,i+1 = 2i+ 1 for i ≥ 0. Finally,
we have:

T0,n = T0,1 + T1,2 + . . .+ Tn−1,n =
n−1∑
i=0

(2i+ 1) =
n∑
i=1

(2i− 1) = n2.

1



2

This completes part 1 of the proposition. The other two parts can be com-
pleted via the exercise below.

Exercise 1/HW 3: For a biased random walk, where Pr[Xt+1 = i +
1|X(t) = i] = p, show that

Ti,i+1 =
1

p
+

(
1

p
− 1

)
Ti−1,i.

Conclude that when p < 1/2, we have Ti,i+1 = Θ
(
cip
)
, where cp =

1

p
− 1, and

thus deduce part 3 of Proposition 1. For p > 1/2, conclude that Ti,i+1 = Θ(1)
and thus T0,n = Θ(n).

Exercise 2: Find Ti,j for i ≤ j for the p = 1/2 case.

2 Randomized algorithm for 2-SAT

Recall that a k-SAT instance ϕ is a set of clauses, where each clause is an
OR of k distinct literals. We assume that the variable set is {x1, . . . , xn} and
we say ϕ is satis�able if there is an assignment (a1, . . . , an) of truth values to
x1, . . . , xn such that every clause of ϕ is made True (or satis�ed). We denote
by m the number of clauses. The following algorithm makes sense for any
instance of SAT. RANDOM-WALK-SAT:

1. Fix an arbitrary assignment (x1, . . . , xn) = (a1, . . . , an).

2. While there exists a false clause C, do:

3. Pick a random literal (uniformly) from C and �ip the value of its vari-
able. For example, if the clause is {x,¬y}, with the current assignment
being x = F, y = T , then with probability 1/2, x is changed to T
(and y unchanged), and with probability 1/2, y is changed to F (x
unchanged).

4. Re-evaluate the values of all clauses.

5. End while

6. Output the assignment.



3

Proposition 2 If ϕ is a satis�able instance of 2-SAT, then the expected time

for RANDOM-WALK-SAT to reach a satisfying assignment is at most n2.

Proof Suppose that ϕ is satis�able and let b = (b1, . . . , bn) be a satisying
assignment. Note that the algorithm de�nes a Markov chain on the Hamming
cube {0, 1}n, but we don't know the transition probabilities. What we want
to estimate is the expected time to reach the assginment b from the initial
assignment a (which was picked arbitrarily).

After t steps of the algorithm, let Xt be the number of variables in which
the current assignment agrees with b. Note that when the algorithm �ips a
variable, it can lead to Xt+1 = Xt− 1 or to Xt+1 = Xt + 1. We thus want to
calculate the expected time t for which Xt becomes equal to n (all variables
agree with b). The value that each Xt can take are in {0, 1, . . . , n}. Thus the
algorithm performs a kind of random walk on {0, 1, . . . , n}.

We claim that the probability of moving towards b is at least 1/2. To see
this, consider a false clause C = {l1, l2}, where l1, l2 are false under the
current assignment of the algorithm. In the assignment under b, the value of
(l1, l2) can be one of (T, F ), (F, T ), (T, T ). If this value were (T, F ) and the
algorithm �ipped l2 instead of l1, then the assignment moves away from b,
that is, if Xt = i, then Xt+1 = i− 1. If the algorithm �ipped l1 instead of l2,
then the assignment moves towards b, that is: Xt+1 = i+1. Thus, in the �rst
two cases, with probability 1/2, the algorithm moves the assignment towards
b. In the third case, no matter which literal is �ipped by the algorithm, the
assignment is moved closer (by Hamming distance one) to b. This proves the
claim in the beginning of this paragraph.

We have thus seen that Pr(Xt = i + 1|Xt = i) ≥ 1/2. By comparing this
with the random walk Markov chain (where the probability is equal to 1/2),
we can conclude that the expected time until Xt = n is at most n2. This
completes the proof of Proposition 2.

Note that RANDOM-WALK-SAT is a Las Vegas algorithm, and if ϕ is not
satis�able, then the algorithm doesn't terminate. Therefore we will forcefully
terminate the While loop after N steps, and by Markov's inequality, the
probability that it doesn't �nd a satisfying assignment (if ϕ is satis�able) is

at most
n2

N
. A choice of N = 10n2 would thus ensure success probability at

least 0.9.



4

3 Analysis of RANDOM-WALK-SAT for 3-SAT

How well does RANDOM-WALK-SAT do an instance of SAT in which clauses
can have 3 or more literals?

Consider a clause C = {l1, l2, l3} that is false under the current assignment.
The algorithm �ips a random literal. What can we say about the probability
that this �ip moves the assignment towards the satisfying assignment? If the
satisfying assignment has exactly one true literal in C, then the probability
that the algorithm �ips this literal is 1/3.

In general, if the clause has k literals and the satisfying assignment makes1 ≤
l ≤ k literals true, then the probability that the algorithm moves towards the

assignment is
l

k
. Because we don't know the value of l, we can only conclude

that this probability is at least
1

k
.

Thus, for k = 3, by applying Proposition 1, the expected time to �nd a
satisfying assignment can only be upper-bounded by O(2n), which doesn't
help, as the trivial algorithm of checking all possible assignments runs in this
time.

4 Schöning's algorithm for 3-SAT:

In 1987, Monien & Speckenmeyer gave the �rst non-trivial algorithm for 3-
SAT (over n variables), running in time O∗(1.61n). This was improved to
O∗(1.38n) in 1998 by Paturi, Pudlak, Saks, Zane (PPSZ); in 2011, the same
algorithm was proved to run in O∗(1.308n) time by Hertli. This algorithm is
also randomized like the one we will see, but the analysis is quite intricate.

In 1999, Schöning gave the following simple randomized algorithm for 3-SAT,
which runs in expected time O∗(1.33n).

RANDOM-WALK-SAT with RESTART:

1. Pick a random assignment (x1, . . . , xn) = (a1, . . . , an).

2. Repeat up to 3n times, terminating if a satisfying assignment is found.

• If there exists a false clause C, do:



5

• Pick a random literal (uniformly) from C and �ip the value of its
variable.

• Re-evaluate the values of all clauses.

3. If the assignment does not satisfy all clauses, GOTO Step 1 (restart).

4. Output the assignment.

One of the obvious ideas behind the restart is that of probability ampli�ca-
tion, but there are two other key ideas.

1. Terminating the algorithm if it doesn't succeed soon is like cutting our
losses and preventing the assignment from going even further away from the
satisfying assignment.

2. When we pick a random assignment, there is a tiny probability that it is
very close to the satisfying assignment, and over many random assignments,
the initial distance from the satisfying assignment can be expected to be close
a few times, which improves the overall success probability.

Claim 1 Consider a random walk on {0, 1, . . . , n}, where Pr[Xt+1 = i +
1|Xt = i] = 1/3 and Pr[Xt+1 = i − 1] = 2/3. Let qj be the probability of

reaching n within 3n steps, when the initial vertex is n− j. Then for j > 0,

we have: qj ≥
c√
j2j

for some constant c > 0.

Assuming this claim, the probability that the algorithm �nds the satisfying
assignment b within 3n steps starting from a random assignment a is at least:

1

2n
+

n∑
j=1

Pr (H(a, b) = j)
c√
j2j
≥ c√

n

n∑
j=0

(
n

j

)
1

2n
1

2j
,

which is equal to
c√
n2n

(
1 +

1

2

)n
=

c√
n

(
3

4

)n
.

Thus, the expected number of Restarts needed by the algorithm isO∗ ((4/3)n).

If the number of restarts is �xed in advance to r(4/3)n
√
n

c
, then the prob-

ability that the algorithm does not �nd a satisfying assignment when ϕ is

satis�able, is at most
1

2r
.

We now prove the claim, completing the analysis of the algorithm.



6

Proof of Claim 1: The probability of reaching n from n−j within 3j ≤ 3n

steps is at least

(
3j

j

)(
2

3

)j (
1

3

)2j

, as this last expression corresponds to

the probability of making exactly 2j steps to the right and j steps to the
left. Substituting Stirling's approximation for the binomial coe�cient (next
section), we get that the probability is at least:

c√
j

27j

4j
2j

3j
1

9j
≥ c√

n

1

2j
.

5 Stirling's approximation

Stirling's approximation for the factorial is:

√
2πn

(n
e

)n
≤ n! ≤ 2

√
2πn

(n
e

)n
.

In particular, if m ≥ αn for α ≥ 1, then for n ≥ 1:(
m

n

)
≥ c√

n

(
αα

(α− 1)α−1

)n
,

where the constant c depends on α.

While the proof of Stirling's approximation needs some work, it is easier to

see why n! is asymptotically close to
(n
e

)n
. Write log n! ∼

∑n
i=1 log i ∼∫ n

1
log x ∼ n log n− n.


