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1 USTCON: Reachability in undirected graphs

We are given an undirected graph G on n vertices, via access to the adjacency
list representation, and the names of two vertices s and t. The problem is
to decide whether there is a path between s and t. This problem is called
USTCON (undirected s-t connectivity). Standard algorithms like BFS and
DFS use Ω(n) space to solve this problem. Our goal is to solve USTCON
using much less space.

We will see how to solve this problem in (i) O(log2 n) space deterministically,
(ii) O(log n) space via a randomized algorithm. In 2004, Omer Reingold gave
a deterministic O(log n) algorithm for this problem. Note that the label of a
single vertex requires Θ(log n) space to store, thus this is best possible.

Proposition 1 We can solve USTCON using O(log2 n) space.

Proof We run the following recursive procedure with D = n− 1.

Check(u, v,D): Is d(u, v) ≤ D?

• If D = 1, check if u, v are adjacent.

• For each w ∈ V \ {u, v}, do:

• Return Check(u,w, bD/2c) AND Check(w, v, dD/2e).

The depth of recursion is O(log n) and each vertex label needs O(log n) space.

Proposition 2 We can solve USTCON in randomized logspace.

Proof Do a random walk from s for 200n|E| steps. If we reach t in this
walk, accept, otherwise reject.

Claim 1 If s, t belong to the same connected component, then the expected

number of steps from s to reach t is at most 2n|E|.
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Therefore, with probability at least 99/100, the algorithm decides correctly.
The space used is the space needed for one vertex label and to count the
number of steps, which is O(log n).

Thus, what remains to be proven is the claim on the expected time to reach
one vertex from another. We shall do this in the remaining sections.

2 Stationary distributions

We de�ne the stationary distribution on a Markov chain as π∗ = limt→∞πt =
π∗ = limt→∞π0M

t. Which Markov chains have stationary distributions and
how can we �nd it? The answer to the second question can be found from
the fact that the stationary distribution must satisfy π∗ = π∗ ·M . Thus, π∗

must be a left-eigenvector of M (or a right eigenvector of MT ), and further
the sum of the entries of π∗ must equal one. For the case of random walks
on undirected graphs, there is a simpler answer.

2.1 Periodicity

Consider a random walk on an undirected graph. In the following examples,
we may guess what happens to the probability distribution as t, the number
of time-steps, goes to ini�nity.
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In the �rst three cases, the distribution converges towards a uniform distri-
bution on the vertices, irrespective of the initial distribution. However, in



3

the last example, there is no stationary distribution.

The reason for this is that if the random walk beings at vertex zero, then
at even time-steps, it can only be in positions zero, two or four; and in odd
time-steps in positions one, three or �ve.

When a state of a Markov chain can only be visited at time-steps that avoid
some congruence class (modulo some integer), then we say that such a state is
periodic. A Markov chain is periodic if it has at least one periodic state, and
aperiodic otherwise. Periodicity can thus be an obstruction to the existence
of stationary probability.

For undirected graphs, bipartiteness is the deciding criteriion for periodicity.

Claim 2 A random walk starting at a �xed vertex on an undirected graph G
is periodic if and only if G is bipartite.

2.2 Reducibility

The other issue we deal with is reducibility. Consider the following example.
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Here, the set of blue vertices forms a strongly connected component, and is a
leaf in the underlying DAG. Once the Markov chain enters such a leaf com-
ponent, it must stay there; thus it su�ces to study stationary distributions
on irreducible Markov chains, that is when the underlying directed graph is
strongly connected. Otherwise, the Markov chain is said to be reducible.

We can now state a su�cient condition for the existence of staioary distribu-
tions: the following result, which is a special case of the fundamental theorem
of Markov chains.

Theorem 3 If a Markov chain is �nite, aperiodic and irreducible, then:

1. It has a unique stationary distribution π∗ = (π∗(1), . . . , π∗(n)), which
is independent of the initial distribution π0.

2. The expected number of time-steps to return to a vertex v, starting at

v is hv,v =
1

π∗(v)
.

We conclude this section with an exact expression for the stationary distri-
bution for random walks on undirected graphs.

Proposition 4 Let G = (V,E) be �nite, undirected, connected, and non-

bipartite. Then for a random walk on G, we have:

π∗(v) =
deg(v)

2|E|
.

Proof For every vertex v, we have:

π∗(v) =
∑

u∈N(v)

π∗(u) · 1

deg(u)
.

We can check by substitution that the above equation is satis�ed by the given
expression, along with

∑
v∈V π

∗(v) = 1. From the fundamental theorem of
Markov chains, this must therefore be the unique stationary distribution.

For an alternative way, we write:

π∗(v)

deg(v)
=

1

deg(v)

∑
u∈N(v)

π∗(u)

deg(u)
.
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Now, substituting f(v) =
π∗(v)

deg(v)
, we get:

f(v) =
1

deg(v)

∑
u∈N(v)

f(u).

We now observe that f must be constant: consider a vertex v for which
f(v) is minimum. Then every neighbor u of v must satisfy f(u) = f(v)
(if some value is larger, then the average-of-neighbors property is violated).
Repeating this argument and using the connectedness of G proves that f is
constant. Finally, the constant of proportionality must be equal to the sum
of the degrees of all the vertices, which proves the result.

An example calculation is shown below, with the stationary probabilities
marked for each vertex.
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3 Hitting times

We de�ne hu,v = E[min{r ≥ 1}|Xt+r = v|Xt = u]. In words, if u 6= v, then
hu,v is equal to Tu,v, the expected time to reach v from u. The quantity hu,u
is the expected time to return to u, and is thus non-zero, whereas Tu,u = 0.

An example:

0 1 2 3

Here, h1,1 =
1

2
(h0,1 + h2,1) =

1 + 3

2
= 2.

The following claim follows from Theorem 3 and Proposition 4.
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Claim 3 For an undirected graph G, and a vertex v ∈ V (G), we have: hv,v =
2|E|
deg(v)

.

Proposition 5 Let G be a connected, undirected graph.

• If u, v are adjacent vertices of G, then hu,v < 2|E|.

• If u, v are arbitrary vertices of G, then hu,v < 2n|E|.

Proof We have: hv,v =
2|E|
d(v)

. Also, hv,v =
1

d(v)

∑
u∈N(v) (1 + hu,v). Thus,

2|E| ≥ 1 + hu,v. This proves the �rst part.

Now, let u, v be arbitrary vertices and uv1v2 . . . vkv be a u − v path in G.
Then we have:

hu,v ≤ hu,v1 + hv1,v2 + . . .+ hvk,v.

Thus hu,v ≤ (n−1)max{hu,v1 , . . . , hvk,v} ≤ (n−1)2|E| < 2n|E|, which proves
the second part.

By using the same idea in the above proof, we can bound the expected time
to visit all vertices, starting at v, and returning to v.

Cover time: The cover time of a vertex v, denoted by c(v) is the expected
time to visit all vertices, starting from v. The cover time of G is de�ned as
c(G) = maxv{c(v)}.

Then we have: c(G) ≤ 4(n− 1)|E| < 2n3.

This can be proved by considering a spanning tree and a traversal from v
and applying the idea from the previous proof.


