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1 Random walks and Markov chains

Let's begin with some examples.

Example 1: As a simple example of a random walk, imagine starting at 0
on the real line. After every discrete time step, you move from your current
position with probability 1/2 to the integer on the left and with probability
1/2 to the integer on the right.
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Exercise 1: Find the probability of being at 0 after two steps. What other
positions can you be in after two steps, and with what probability?

More generally, the following are two problems that we would like to solve.

• Given a number t of steps, �nd the probability distribution of being at
various positions after t steps.

• Find the expected number of time-steps to reach a given position.

Example 2: A random walk can be de�ned on any undirected graph, as
follows: you start at an initial vertex v0, and from any vertex v, you can

move to each of the neighbors of v with equal probability, that is:
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In the example above, let's suppose that the initial vertex in the random
walk is a. We can then de�ne a sequence of variables X0, X1, X2, . . ., where
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X0 = a, and for i ≥ 1, Xi is the vertex after i steps of the random walk,
with the probability distribution of Xi+1 being completely determined by the
value of Xi.

Some example values are: Pr[X1 = b] = Pr[X1 = c] = Pr[X1 = d] = 1/3,
and Pr[X2 = a] = 1/3 · 1/2 + 1/3 · 1/2 + 1/3 · 1 = 2/3.

Example 3: A natural example of a random walk is sur�ng on the internet
(or sites like Wikipedia and youtube), where an user may keep following links
somewhat randomly. However, you'll notice that not all links are equally
likely to be clicked in practice.

Thus we may consider a more general model of a random walk, where the
probabilities of visiting two di�erent neighbors from the current vertex are
not necessarily equal. This generalization is called a Markov chain, and a
classical example is the following.

Example 4: The following is a simplistic model of weather prediction, in
which every day can be either hot, pleasant or rainy. The probability dis-
tribution of a given day's weather is determined by the previous day's. For
example, if today is hot, then tomorrow is hot with probability 0.65, and
pleasant with probability 0.35.

The probablities of transitions can be represented as a matrix, as shown
below. The rows and columns are indexed by the states in the order Hot,
Pleasant, Rainy.



3

2 The transition probability matrix

The following is the transition probability matrix for the above example.

M =

 0.65 0.35 0
0.3 0.55 0.15
0 0.6 0.4


Our working de�nition of discrete, �nite-state Markov chains will be the
following.

De�nition A discrete, �nite-state Markov chain consists of a �nite set of
states: Ω = {s1, . . . , sn}, a transition probability matrix: (Mi,j), and a se-
quence X0, X1, X2, . . . of random variables, satisfying the following condition.

Pr (Xt+1 = sj|Xt = si, Xt−1 = si−1, . . . , X0 = s0) = Pr(Xt+1 = sj|Xt = si) = Mi,j.

The condition above is called the memory-less property and it is what char-
acterizes a Markov chain: the probability distribution of Xt+1 is determined
completely by the value of Xt. Note that Xt+1 is not independent of the val-
ues Xt−1, Xt−2, . . .; rather, all the dependence is captured by Xt, or formally,
Xt+1|Xt is independent of the values Xt−1, Xt−2, . . ..

What about the initial state X0? We will assume that it is chosen according
to some initial probability distribution π0 = (π0(1), . . . π0(n)), where π0(i) is
the initial probability of being at state i.

2.1 Calculation of probability distribution after t steps

Let πt = (πt(1), . . . , πt(n)) be the probability distribution after t steps. For
Example 4, we assumed that π0 = (1, 0, 0).

We then have, for i ≥ 1:

Pr[Xt = si] =
∑
j

Pr (si was reached from sj in the last step)Pr (Xt−1 = sj)

and thus:
πt(i) =

∑
j

πt−1(j)Mji ∀i ≥ 1. (1)
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Notice that the RHS is the inner (dot) product of the (row) vector πt−1 and
the ith column of M . Thus, we can write the above set of equations as:
πt = πt−1 ·M .

Thus πt = π0M
t. Let's see some examples.

π1 = (1, 0, 0) ·

 0.65 0.35 0
0.3 0.55 0.15
0 0.6 0.4

 = (0.65, 0.35, 0).

π2 = (0.65, 0.35, 0) ·

 0.65 0.35 0
0.3 0.55 0.15
0 0.6 0.4

 = (0.5275, 0.42, 0.0525).

To write the probability distribution as a column vector, left-multiply by the
transpose of M .

πT
2 =

 0.65 0.3 0
0.35 0.55 0.6

0 0.15 0.4

 ·
 0.65

0.35
0

 =

 0.5275
0.42

0.0525


Exercise 2: Calculate π10 with π0 = (1, 0, 0), and with π0 = (1/3, 1/3, 1/3).
You may use a program/software. Repeated squaring or diagonalizing the
matrix also help. What do you observe?

Exercise 3: Suppose that we toss a biased coin (say Pr[H] = p) repeatedly,
and the state is the result of the most recent toss (H/T). Model this as a
Markov chain.

3 Expected time to reach a state

Example 5: Consider an undirected graph G = (V,E), where V = {a, b, c}
and E = {ab, bc}. Suppose that we start a random walk at the vertex b.
What is the expected number of steps to reach a?

To answer this, we de�ne, for two vertices u, v the quantity Tuv as the ex-
pected number of steps to reach v from u. It turns out that we can formulate
linear recurrences involving these values, and hence solve for them.

In the above example, we want to �nd Tba. We have: Tba =
1

2
(1) +

1

2
(1 +



5

Tca), because with probability 1/2, we reach a from b in one step, and with
probability 1/2, we move to c in one step, from which the expected time to
reach a is Tca.

Similarly, we have: Tca = 1+Tba. Substituting this in the previous recurrence,

we get: Tba = 1 +
1

2
(1 + Tba), which yields Tba = 3.

Exercise 4: In Example 4, write recurrences for THR and TPR. [H,P,R
stand for Hot, Pleasant, Rainy.]

Thus calculate THR, the expected number of days until Rain, assuming that
today is a Hot day.

Exercise 5: Find Tac for the graph below.
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