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1 A method for approximate counting

Let S ⊆ U . To �nd |S|, we saw the idea of sampling uniformly at ran-
dom from U . The number of samples needed for an (ε, δ)-approximation is

Θ

(
|U |
|S|

1

ε2
log(

1

δ
)

)
.

Approximately uniform sampling su�ces. Suppose that X is a random
sample and let Y be an indicator variable so that Y = 1 if X ∈ S and
Y = 0 otherwise. Then the estimate on su�cient number of samples is

Θ(
1

E[Y ]
) and we have E[Y ] =

|S|
|U |

. We can thus observe that if we are

able to sample approximately u.a.r. then the number of samples doesn't
increase signi�cantly. That is, suppose that X is a random sample such

that Pr[X ∈ S] ∈ |S|
|U |

(
1

2
,
3

2

)
. Then E[Y ] in this case, compared to the

exactly-uniform sample case, is at most halved, so that the required number
of samples at most doubles.

We now consider a new idea. As before, we will assume that
|U |
|S|

is large.

The idea is to �nd a sequence of sets S0, S1, . . . , Sm such that the following
are satis�ed.

• S = S0 ⊂ S1 ⊂ . . . ⊂ Sm ⊂ U .

• |Sm| is known or easy to compute.

• Sampling from each Si possible.

• |Si|
|Si−1|

is small for every i.

Then we can estimate successively, |Sm−1|, |Sm−2|, . . . , |S0|; to estimate |Si|,
we sample from Si+1.
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Let r1 =
|S1|
|S0|

, r2 =
|S2|
|S1|

, . . . , rm =
|Sm|
|Sm−1|

. Then we have:
|Sm|
|S0|

=
∏

i ri.

Suppose that we have an (ε̄, δ̄) approximation for each of the sets, that is:

Pr

[
r̄i
ri
∈ (1− ε̄, 1 + ε̄)

]
≥ 1− δ̄.

Claim 1 If ε̄ ≤ ε

2m
and δ̄ ≤ δ

m
, then we have an (ε, δ)-approximation for

S, that is:

Pr

[
r̄1
r1

r̄2
r2
. . .

r̄m
rm
∈ (1− ε, 1 + ε)

]
≥ 1− δ.

Proof The probability that
r̄i
ri

/∈ (1 − ε̄, 1 + ε̄) for some i is, by the union

bound at most mδ̄ ≤ δ.

Thus, with probability at least 1 − δ, all the ratios
r̄i
ri

are in (1 − ε̄, 1 + ε̄).

Now, it su�ces to show that(
1− ε

2m

)m
≥ 1− ε and

(
1 +

ε

2m

)m
≤ 1 + ε.

The �rst inequality follows from

If
|Si+1|
|Si|

≤ r for every i, then the total number of samples needed is thus

mO

(
t
m2

ε2
log(

m

δ
)

)
= O

(
tm3

ε2
log(

m

δ
)

)
.

2 Counting Independent Sets

Given an undirected graph G = (V,E), we denote by Ω(G) the set of in-
dependent sets in G. We wish to compute |Ω(G)| approximately. For ex-
ample, in the graph shown below, Ω(G) consists of ∅,{a}, {b}, {c}, {d}, {e},
{a, d}, {a, e}, {b, c}, {b, e}, {d, e}, and {a, d, e}. Thus, |Ω(G)| = 12.
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To use the idea in the previous section, we need to de�ne a suitable sequence
S0, S1, . . . , Sm such that S0 = Ω(G). Let the edges of G be e1, e2, . . . , em. We
de�ne G0 = G and for i ≥ 1, Gi = G \ {e1, . . . , ei}. Thus Gm is the empty
graph. We now let Si = Ω(Gi). Clearly Si ⊂ Si+1 and |Sm| = 2n.

We thus need to bound the ratios
|Si+1|
|Si|

and also �nd a way to uniformly

sample from Ω(G) for any graph G.

We �rst show a bound on the ratios:
|Ω(Gi+1)|
|Ω(Gi)|

≤ 2. That is, ifG is any graph

and {u, v} ∈ E(G), then |Ω(G \ {u, v})| ≤ 2|Ω(G)|. To see this, consider an
independent set I ∈ Ω(G\{u, v})\Ω(G). Then I must contain both u and v.
Clearly, I \{v} is an independent set in G; the map from Ω(G\{u, v})\Ω(G)
to Ω(G) that takes I to I \{v} is injective; thus |Ω(G\{u, v})| ≤ |Ω(G)| and
the desired claim follows.

2.1 Sampling via random walks

We now turn to the problem of sampling uniformly from Ω(G). For this,
we de�ne a biased random walk on Ω(G) and then show that the stationary
distribution of this random walk is the uniform distribution. When walk is
executed for su�ciently large number of time-steps, the resulting state will
be close to uniform; however we shall be unable to prove any bound on this;
indeed only for graphs of maximum degree at most 5 does this walk converge
fast enough.

The random walk is de�ned as follows.

• Pick an arbitrary vertex v and set X0 = v.

• For i = 1 to t

• Pick a vertex w u.a.r from V .

• If Xi ∪ {w} is an ind-set, Xi+1 = Xi ∪ {w}.

• Else if w ∈ Xi, Xi+1 = Xi \ {w}.

• Else Xi+1 = Xi.

Note that if I, J are adjacent, then I, J di�er in exactly one vertex, and the
transition from I to J is made precisely when that vertex is chosen in step
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3. Thus MI,J =
1

|V |
. Also, if deg(I) = d, then MI,I = 1− d

|V |
.

To show that the stationary distribution is the uniform distribution, we ob-
serve and use the fact that

∑
J∈N(I)MJ,I = 1, with the help of the following

result.

Theorem 1 For an irreducible, aperiodic Markov chain, if∑
u∈N(v)

Mu,v = 1∀v ∈ V,

then π∗ is the uniform distribution.

Proof We have:
π∗(v) =

∑
u∈N(v)

Mu,vπ
∗(u). (1)

Since
∑

u∈N(v)Mu,v = 1, it follows that the value of π∗(v) is a weighted
average of the value of the neighbors of v, and is thus constant.

3 Reversible chains and the Metropolis Algo-

rithm

We now focus on the problem of �nding transition probabilities to achieve a
given target distribution as the stationary distribution. For this, we need the
concept of reversible Markov chains. Given a Markov chain X1, . . . , Xn, . . .,
the reverse sequence Xm, Xm−1, . . . , X0 for any given m, also satis�es the
Markovian (memoryless) property.

The transition probability is given by:

Pr[Xk = v|Xk+1 = u] =
Pr[Xk = v ∧Xk+1 = u]

Pr[Xk+1 = u]
=
Pr[Xk = v]Mv,u

Pr[Xk+1 = u]
.

Taking limits as m→∞, we obtain: Qu,v =
π∗(v)

π∗(v)
Mv,u.

We say that a Markov chain is reversible if the reverse Markov chain has the
same transition probabilities, that is if Qu,v = Mu,v. Note that this means

Mu,v =
π∗(v)

π∗(v)
Mv,u for all u, v. The following result shows that whenever
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the above condition holds for a distribution π, it must be the stationary
distribution.

Theorem 2 For an irreducible, aperiodic Markov chain, if

π(u)Mu,v = π(v)Mv,u∀u, v,

and
∑

v π(v) = 1, then π is the stationary undistribution.

Proof Can be seen from substitution in Equation 1.

We now use the above result to design transition probabilities for which a
given distribution π is the stationary distribution.

Metropolis algorithm:

• Choose a constant c such that c ≤ 1

deg(v)
for all v.

• Set Mu,v = c
π(v)

π(u)
if π(v) ≤ π(u). In this case, Mv,u is set to c.

• Else set Mu,v = c. [This is the reverse of the previous situation.]

• Set Mv,v = 1−
∑

u∈N(v)Mv,u.

The last condition ensures that the sum of the outgoing transition probabil-
ities sums to one, for every vertex. The chosen values satisfy the equation
in Theorem 2, thus the stationary distribution for the Markov chain is π, as
desired.


