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1 A method for approximate counting

Let S C U. To find |S|, we saw the idea of sampling uniformly at ran-
dom from U. The number of samples needed for an (g, d)-approximation is

o <%5—1210g(%)>.

Approximately uniform sampling suffices. Suppose that X is a random
sample and let Y be an indicator variable so that Y = 1 if X € S and
Y = 0 otherwise. Then the estimate on sufficient number of samples is
1 5]
O(—===) and we have E[Y] = —.
ETY] _ U]
able to sample approximately u.a.r. then the number of samples doesn’t
increase significantly. That is, suppose that X is a random sample such
S| [/1 3
that Pr[X € S] € % (5,5) Then FE[Y] in this case, compared to the
exactly-uniform sample case, is at most halved, so that the required number
of samples at most doubles.

We can thus observe that if we are

U
We now consider a new idea. As before, we will assume that % is large.
The idea is to find a sequence of sets Sy, 51, ..., .9, such that the following

are satisfied.
e S=5CS cC...cs§,cU.
e |S,,| is known or easy to compute.

e Sampling from each S; possible.
. 5]
|Si—1]

Then we can estimate successively, [Sy,—1], [Sm—2|, - - ., [Sol; to estimate |S;|,
we sample from S; .

is small for every 1.



|51] 52| |5 |Sm|
Letri =1, 1=, ..., "m = . Then we have: —— =[], r;.
YT s S E
Suppose that we have an (£,6) approximation for each of the sets, that is:
Pr [ﬁ € (1—5,1+e)] >1-3.
T
. __ € - 0 o
Claim 1 If¢ < o and § < —, then we have an (g, 9)-approzimation for
m m
S, that is:
Pr {T—l@...r—m € (1—e,1+s)} >1-6.
172 T'm

Proof The probability that i ¢ (1 —¢&,14 &) for some ¢ is, by the union
T

bound at most md < 6.

T . _ _
Thus, with probability at least 1 — 0, all the ratios — are in (1 — &,1 + &).
T
Now, it suffices to show that

<1—i>m21—5and <1+i> <1+4e.
2m 2m

The first inequality follows from

Si+1|
S

mO (t?—;log(%)) ~0 (gs log(%)>.

If

< r for every i, then the total number of samples needed is thus

2 Counting Independent Sets

Given an undirected graph G = (V| E), we denote by Q(G) the set of in-
dependent sets in G. We wish to compute |Q(G)| approximately. For ex-
ample, in the graph shown below, Q(G) consists of 0,{a}, {b},{c},{d},{e},
{a,d},{a,e},{b,c}, {b,e}, {d, e}, and {a,d,e}. Thus, |QG)| = 12.
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To use the idea in the previous section, we need to define a suitable sequence
So, 51, - -+, Sm such that Sy = Q(G). Let the edges of G be eq,ea,...,6e,. We
define Go = G and for i > 1, G; = G\ {ey,...,e;}. Thus G,, is the empty
graph. We now let S; = Q(G;). Clearly S; C S;;1 and |S,,| = 2".

|Sit1]

We thus need to bound the ratios 5]

and also find a way to uniformly

sample from Q(G) for any graph G.

% < 2. That is, if G is any graph
and {u,v} € E(G), then |Q(G \ {u,v})| < 2|Q(G)|. To see this, consider an
independent set I € Q(G\ {u,v})\Q(G). Then I must contain both v and v.
Clearly, I\ {v} is an independent set in G; the map from Q(G\ {u,v})\ Q(G)
to Q(G) that takes I to I'\ {v} is injective; thus |Q(G\{u,v})| < |2(G)| and
the desired claim follows.

We first show a bound on the ratios:

2.1 Sampling via random walks

We now turn to the problem of sampling uniformly from Q(G). For this,
we define a biased random walk on Q(G) and then show that the stationary
distribution of this random walk is the uniform distribution. When walk is
executed for sufficiently large number of time-steps, the resulting state will
be close to uniform; however we shall be unable to prove any bound on this;
indeed only for graphs of maximum degree at most 5 does this walk converge
fast enough.

The random walk is defined as follows.
e Pick an arbitrary vertex v and set Xy = v.
e fori=1tot
e Pick a vertex w u.a.r from V.
o If X; U {w} is an ind-set, X;; = X; U {w}.
e Elseif w e X;, X;11 = X; \ {w}.
e Else X;11 = X;.

Note that if I, J are adjacent, then I, J differ in exactly one vertex, and the
transition from [ to J is made precisely when that vertex is chosen in step



1 d
—. Also, if deg(I) = d, then M;;=1— —.
V] V]
To show that the stationary distribution is the uniform distribution, we ob-
serve and use the fact that ZJGN(I) Mj;; =1, with the help of the following

result.

3. Thus MLJ =

Theorem 1 For an irreducible, aperiodic Markov chain, if

> M, =1weV,

u€N (v)
then 7 is the uniform distribution.

Proof We have:
™ (v) = Z My 7™ (u). (1)

u€EN (v)

Since > ey Mup = 1, it follows that the value of 77(v) is a weighted
average of the value of the neighbors of v, and is thus constant. [

3 Reversible chains and the Metropolis Algo-
rithm

We now focus on the problem of finding transition probabilities to achieve a
given target distribution as the stationary distribution. For this, we need the
concept of reversible Markov chains. Given a Markov chain Xy,..., X,,...,
the reverse sequence X,,, X,,_1,..., X for any given m, also satisfies the
Markovian (memoryless) property.

The transition probability is given by:

PriXy=vAXpp=ul  PriXy =v]M,,

Pri Xy =v| Xy =u| = =
T[ k U| k+1 u] P'f‘[Xk_’_l — U] PT[Xk+1

T (v)
ﬂ*(v)Mv’u'

We say that a Markov chain is reversible if the reverse Markov chain has the
same transition probabilities, that is if @, , = M,,. Note that this means

)
Mer = )

Taking limits as m — oo, we obtain: @, =

M,,, for all u,v. The following result shows that whenever



the above condition holds for a distribution =, it must be the stationary
distribution.

Theorem 2 For an irreducible, aperiodic Markov chain, if
m(u) My, = m(v) M, Yu, v,

and Y w(v) =1, then m is the stationary undistribution.
Proof Can be seen from substitution in Equation 1. [l

We now use the above result to design transition probabilities for which a
given distribution 7 is the stationary distribution.

Metropolis algorithm:

1
e Choose a constant ¢ such that ¢ < ——— for all v.
deg(v)
7(v)

) if 7(v) < m(u). In this case, M, is set to c.

o Set M, ,=c

e Else set M, , = c. |This is the reverse of the previous situation.|
[ ] Set M’U,’U - ]. - ZUGN(U) M’U,U'

The last condition ensures that the sum of the outgoing transition probabil-
ities sums to one, for every vertex. The chosen values satisfy the equation
in Theorem 2, thus the stationary distribution for the Markov chain is 7, as
desired.



