Probability & Computing

Lecture 6

21/01/2020

1 Outline

- Review of Markov's Inequality
- Chebyshev's Inequality
- Randomized Median-find

2 Review of Markov's Inequality

Exercise 1 Let $X \ge 0$, E[X] = 10. What can you say about $Pr[X \ge 50]$? Let $X \ge -10$ and E[X] = 10. What can you say about $Pr[X \ge 50]$? Let $X \le 20$ and E[X] = 10. What can you say about $Pr[X \le 0]$?

Concentration around the mean using Markov:

Let $X = X_1 + \ldots + X_n$, where $Pr(X_i = 1) = p$, $Pr(X_i = 0) = 1 - p$. Consider the values p = 1/2. What can we say about Pr(X > 0.7n)?

Using Markov's inequality directly, we can say that $Pr(X > 0.7n) < \frac{0.5n}{0.7n} = 5/7$. This is however a bad bound, and it is possible to use symmetry to improve this to 5/14, which is still not a good bound for large values of n. We will improve this a lot in the next section by using the variance of X.

3 Chebyshev's Inequality

1

Theorem 1

Let X be a random variable with expectation μ and standard deviation σ . Then we have:

$$\Pr[|X - \mu| \ge k\sigma \le \frac{1}{k^2}.$$

For example, $Pr[|X - \mu| \ge 5\sigma] \le \frac{1}{25}$, and $Pr[|X - \mu| \ge 10\sigma] \le \frac{1}{100}$.

Exercise 2 Suppose that the lifetime of light-bulbs from a shop is distributed randomly with a mean of 200 hours. If the variance is known to be at most 100, show that with probability at least 96%, the bulb will last for at least 150 hours.

Variance of Binom(n,p):

Let X be the sum of n identical Bernoulli variables X_1, \ldots, X_n with probability p. Then, we have $Var[X] = nVar[X_i] = n(p - p^2)$.

In particular, when p = 1/2, we get $Var[X] = \frac{n}{4}$ and $\sigma[X] = \frac{\sqrt{n}}{2}$. We can now apply Chebyshev's inequality to obtain:

$$Pr(X > 0.7n) \le Pr(|X - 0.5n| > 0.2n) \le \frac{1}{0.16n}$$

where we used $0.2n = 0.4\sqrt{n}\sigma[X]$.

4 Median-Find Problem

Input: $A = a_1, a_2, ..., a_n$

Output: $b_{n/2}$, where $b_1 < b_2 < \ldots < b_n$ is the sorted order of the a_i s.

We now describe a randomized algorithm. We use parameters $r \sim n^{3/4}$, $k \sim n^{1/8}$, $s = \frac{k\sqrt{r}}{2} \sim \frac{n^{1/2}}{2}$, and $t = \frac{4sn}{r} \sim 2n^{3/4}$.

Algorithm:

- 1. Pick X_1, \ldots, X_r independently and u.a.r. from the $a_i s$.
- 2. Sort the X_i s to obtain Y_1, \ldots, Y_r .
- 3. Set $l = Y_{r/2-s}$ and $u = Y_{r/2+s}$.
- 4. Compare every element with l, u.
- 5. Let $L = \{a \in A : a < l\}, U = \{a \in A : a > u\}.$ If |L| > n/2 or |U| > n/2, ABORT.
- 6. $M = \{a \in A : l \le a \le u\}.$

If |M| > t, Abort.

7. Sort M and return the element whose rank in M is n/2 - |L|.

Analysis of running time:

If the algorithm does not fail, it returns the correct answer in Step 7. Step 4 takes 2n comparisons, and the remaining steps together take time $O(n^{3/4} \log n)$, thus the total time is 2n + o(n).

Analysis of failure probability:

There are two steps in which the algorithm can fail: in step 5, it may happen that the median lies outside the interval [l, u], or in step 6, it may happen that |M| is too large. We will now bound the probabilities of these two "bad events".

Let E_1 be the event that the *l* is larger than the median, that is: $Y_{r/2-s} > b_{n/2}$; and let E_2 be the event that $|M \cap \{b_1, \ldots, b_{n/2}\}| > t/2$.

Proposition 1 For
$$s = k \frac{\sqrt{r}}{2}$$
 and $t = \frac{4sn}{r}$, we have:
 $Prob(E_1) \leq \frac{1}{k^2}$, and $Prob(E_2) \leq \frac{1}{k^2}$.

Proof:

The first type of bad event:

The event $E_1 : Y_{r/2-s} > b_{n/2}$ is equivalent to: $|X \cap L| \le r/2 - s$, where $L = \{b_1, \ldots, b_{n/2}\}.$

We can write $|X \cap L|$ as a sum of indicator variables. Let $Y_i = 1$ if $X_i \in L$ and $Y_i = 0$ otherwise. Thus, $|R \cap L| = \sum_{i=1}^r Y_i$; we shall denote this sum by Y for convenience.

We have $E[Y] = \frac{r}{2}$ and $\sigma(Y) = \sqrt{r/2}$.

Thus,
$$Pr(E_1) = Pr(|X \cap L| \le r/2 - s) = Pr(Y \le r/2 - k\sqrt{r}/2) \le \frac{1}{k^2}$$
.

The second type of bad event:

The event $|M \cap \{b_1, \ldots, b_{n/2}\}| > t/2$ is equivalent to: $|X \cap T| \ge r/2 - s$, where $T = \{b_1, b_2, \ldots, b_{n/2-t/2}\}$.

Let $Z = |X \cap T|$ so that $E[Z] = \frac{r}{n}(n/2 - t/2) = \frac{r}{2} - \frac{rt}{2n} = r/2 - 2s$ and we know that $\sigma[Z] \leq \sqrt{r/2}$.

Thus, $Pr(E_2) = Pr(Z \ge r/2 - s) \le Pr(|Z - E[Z]| \le s) \le \frac{1}{k^2}$. This completes the proof of Proposition 1.

Finally, we find that the probability that the algorithm fails is at most $2Pr(E_1 \cup E_2) \leq \frac{4}{k^2} = \frac{4}{n^{1/4}}.$