
CS5120: Probability & Computing Jan-May 2020

Lecture 17-18
The Method of Conditional Expectations

Lecturer: N.R.Aravind Scribe: N.R.Aravind

In this class, we will see two more examples of the method of conditional
expecation: �nding a large cut in graphs, and a generalized tic-toe game.

1 Cuts in graphs

Recall from class one, the de�nition of a cut: For an undirected graph G =
(V,E), a cut is a partition (A, V \ A) of the vertices, and the set of edges
{{x, y} : x ∈ A, y ∈ V \A} is called a cut-set, and sometimes the edge-set is
also referred to as the cut, as we shall do.

In the max-cut problem, we are given a graph G = (V,E), and our goal is
to �nd a cut with the largest number of edges possible. Unlike the problem
of �nding a minimum cut, the problem of �nding a max cut is NP-hard.
However, we shall now see that we can e�ciently �nd a cut with at least
|E|/2 edges.

Consider a random cut; that is: place each vertex independently in A with
probability 1/2 (and in B = V \A with probability 1/2). Then the probability
that an edge uv is part of the cut is equal to the probability that u, v are
placed in di�erent sets, that is 1/2. Thus, the expected number of edges in
the cut is equal to m/2, where |E| = m.

Our goal is to devise a deterministic algorithm that �nds a cut of size at least
m/2. To this end, we shall follow the method of conditional expectation; we
order the vertices arbitarilly as v1, . . . , vn, and place the vertices one by one
into either A or B.

Suppose that vertices v1, v2, . . . , vi−1 have already been placed, and consider
the vertex vi. Let EA(i) be the expected number of edges in the cut (over
a random placement of vertices vi+1, . . . , vn) when vi is placed in A, and let
EB(i) be the expected number of edges in the cut (over a random placement

1

2

of vertices vi+1, . . . , vn) when v is placed in B.

We then compute and compare EA(i) and EB(i). If EA(i) is larger, vi is
placed in A, else it is placed in B. Thus, it now su�ces to compute (or just
compare) the two expectations.

Let m0 denote the number of edges currently in the cut, dA be the number
of neighbors of vi currently in A, and let dB be the number of neighbors of
vi currently in B, and let dC be the unplaced neighbors of vi.

Then we have EA(i) = m0 + dB +
dC
2
, and EB(i) = m0 + dA +

dC
2
. We have

EA(i) ≥ EB(i) if and only if dB ≥ dA. Thus, if DB is larger, we will place vi
in A and otherwise, we will place vi in B.

The algorithm is thus:

• Set A = ∅, B = ∅.

• for i = 1 to n, do:

• Find the number of current neighbors of vi in A, B respectively: call
them dA, dB respectively.

• If dB > dA, set A = A ∪ {vi}, else set B = B ∪ {vi}.

• end for. Output A,B.

If we denote by µ(i), the expected number of edges in the cut after placing
the �rst i vertices, then we have µ(0) = m/2, and also µ(i) ≥ µ(i − 1) for
every i, so that µ(n) ≥ m/2.

The argument that µ(i) ≥ µ(i − 1) is similar to that for 3-SAT: we have

µ(i− 1) =
1

2
(EA(i) + EB(i)), and µ(i) = max(EA(i), EB(i)).

2 The Erd®s-Selfridge game

We now see an example, which is one of the earliest applications of the
method of conditional expectation.

Consider the game of tic-tac-toe. The game is played on a 3 by 3 grid, and
two players, whom we shall call A and B, take turns to label an unlabeled
cell with their respective symbol: we will use A,B, instead of the traditional

3

crosses and circles. Further, we will assume that player A is the �rst player.
The goal of the game for A is to have three cells in a row (or column, or
diagonal) all labeled A. The goal for B is to stop A from achieving this
(B cannot achieve the con�guration before A, with perfect play from both
players).

In the example below, the cells were marked in the order (2, 2), (1, 2), (1, 1), (3, 3), (2, 1)
at which point, irrespective of B's move, A will subsequently win the game.

1 2 3
1 A B
2 A A
3 B

However, player B does have a strategy to stop A from winning, in tic-tac-
toe. If the 3 grid were replaced by a larger grid, and the winning condition
for A is to have a full row/column/diagonal �lled with As, then we'd expect
that B will still draw. The intuitive reason for this is that the number of
winning con�gurations is small, namely (2n + 2), compared to the number
of cells in such a con�guration (n).

In 1973, Erd®s and Selfridge generalized this game as follows. There's a
universe U of elements, and a collection F of subsets S1, . . . , Sm, such that
|Si| = n. Players take turns to pick an element from U and give it their label
(A or B). Player A wins if there is a set Si all of whose elements are labeled
A.

In the above example, the universe is the set of cells, and the subsets are
the rows, columns and diagonals. The result of Erd®s and Selfridge is the
following.

Theorem 1 If m = |F| < 2n−1, then player B has a strategy to draw the

game.

We now prove the above result by giving a strategy for B to draw the game,
using the method of conditional expectation.

Proof of Theorem 1: For a set S ∈ F , let XS = 1 if all its elements are
labeled as A, and XS = 0 otherwise. Let X =

∑
S∈F XS, and let t = dU/2e

be the number of elements that will be labeled by A.

If we initially labeled each element randomly as A or B, then we'll have:

4

Pr[XS = 1] =
1

2n
for every set S, and E[X] =

|F |
2n

<
1

2
.

For i = 1, 2, . . . , t, we denote by µA(i), the expected value of X after A
has labeled i elements (the expectation being over a random assignment of
unpicked elements). Similarly, let µB(i) be the expected value of X after B
has labeled i elements.

The aim of B will be to ensure that µA(i) < 1 after A has played i moves,
for every i. In particular, when the game ends with all the elements having
been labeled, the value of µA(t) is less than one, that is, zero.

Let's calculate µA(1), that is E[X] after the �rst move of A. Let u be the
element labeled by A, and let S be a set containing u. Then Pr[XS = 1] =
1

2n−1
. For a set S that doesn't contain u, we have: Pr[XS = 1] =

1

2n
<

1

2n−1
.

Thus, µA(1) =
∑

S∈F E[XS] ≤
|F |
2n−1

< 1.

Now, it is B's move. We note that µA(i) > µB(i) < µA(i+ 1), because after
B picks an element v, the value of Pr[XS] becomes zero for sets S containing
v, and is unchanged for other sets. After that, when A picks an element
w, the value of Pr[XS] doubles for sets containing w, and is unchanged for
other sets. The statements are true irrespective of whether S already has an
element labeled B or not.

Let µ(v) =
∑

S:v∈S E[XS]. By the argument in the preceding paragraph, if B
labels v, then E[X] reduces by µ(v), and if A labels v, then E[X] increases
by µ(v).

Thus, B will pick v such that µ(v) is maximum and label it as B. Note
that if A subsequently picks w, then we have µ(w) ≤ µ(v). Thus µB(i) =
µA(i)−µ(v) and µA(i+1) = µB(i)+µ(w), which gives: µA(i+1) = µA(i)−
µ(v) + µ(w) ≤ µ(A).

Thus, B ensures that µA(i) never increases with i, and since µA(1) < 1, we
have µA(t) < 1, as desired.

Remark: The proof also works for cases where the sets do not necessarily

have to be of the same size. The assumption needed is:
∑

S∈F
1

2|S|
<

1

2
.

