Lecture 16/17
The Method of Conditional Expectations

CS5120: Probability & Computing Jan-May 2020

Lecturer: N.R.Aravind Scribe: N.R.Aravind

1 3-SAT and random assignments

A E-SAT instance ¢ is a set of clauses, where each clause is an OR of &
distinct literals. An instance in which every clause has at most k distinct
literals will be called a partial k-SAT instance; a partial instance can have
empty clauses which are assumed to be True. We denote by m the number
of clauses, and n the number of variables.

An example of a 3-SAT instance is p = {(xVyV 2),(ZVzVw)} with m =2
clauses, over n = 4 variables. An example of a partial 3-SAT instance is

ple=F)={(yVv2),(T)}

We denote by p(p), the expected number of clauses satisfied by a random
assignment to the variables of ¢.

Observation:

e If ¢ is an instance of 3-SAT, then the probability of each clause being
satisfied is 1 — 1/8 = 7/8; thus u(p) = 7m/8.

o If v is a partial 3-SAT instance, with mg, my, mo, m3 denoting the num-

1
ber of clauses of size 0, 1,2, 3 respectively, then u(p) = mgy + §m1 +
3 7

—Mg + —Ms3.

4 3

2 Finding an assignment satisfying many clauses

For a 3-SAT instance ¢ with m clauses, we saw that the expected number of
clauses satisfied by a random assignment is 7m/8. Can we actually find an
assignment satisfying these many clauses? That’s the goal of this section.



Let ¢ be a 3-SAT instance with n variables and m clauses. Consider a
binary tree whose root is ¢, with leaves being the 2" possible assignments,
and where each vertex at the ith level (for i = 1,2,...,n) has two children,
one corresponding to x; = T and the other corresponding to z; = F'.

The first two levels of this tree are illustrated below. A vertex at depth 7
corresponds to a partial 3-SAT instance, in which the first ¢ variables have
been assigned values.

’gp(m,x% . ,xn)‘

’gp(T,xQ,...,xn)‘ ’(,O(F,I’Q,...,LU”)‘

’@(T,T,...,xn)‘ ’@(T,F,...,xn)‘ ’@(F,T,...,xn)‘ ’gp(F,F,...,xn)‘

Our algorithm will successively choose a truth-value for each of xq, ..., z,.
Which value should we choose for 217 Equivalently, which of the two subtrees
(plxy =T) vs plzy = F) should we choose?

The idea is that we choose the “heavier” subtree, where the “weight” of a
subtree rooted at node v is equal to p(yp,); here ¢, is the partial 3-SAT
instance at node v.

Thus, the algorithm is the following:
e Set u to be the root.
e Fori=1 to n, do:

o If u(pulr; =T) > u(pulr; = F), then set x; = T and u to be the child
node(of current u) corresponding to z; = T. Else set z; = F and u to
be the child node corresponding to z; = F'.

We claim that after every iteration, u(y,) stays the same or increases (that
is, is non-decreasing). Thus, when the algorithm reaches a leaf node, corre-
sponding to an assignment x; = ay,...,x, = a,, where each a; € {T, F},
the number of clauses satisfied by this assignment is at least as large as



To prove the claim, let v be a node with two children v, w, where v corre-
sponds to x; =T and w to x; = F'. Then note that:

(1(p0) + p(ow)) -

N | —

1 1
(pu) = 5#(%% =T)+ 5#(%% =F)=

Thus, max (u(ey), (Yw)) > p(ey), which proves the claim, and completes
the argument for correctness of the algorithm.

Analysis of running time: A key point of the above algorithm is that
computing ¢, for a node u can be done efficiently (in polynomial time),
since from section 1, it is a linear combination of the number of clauses with
0,1,2,3 literals; these numbers can be counted in O(m) time. Thus each
iteration takes O(m) time, so that the total running time is O(mn).



