
Probability & Computing

Lecture 11

11/02/2020

1 Outline

• Streaming Problems

• Algorithm for �nding the length of the stream

• Idea for counting distinct elements

2 Streaming Problems

In a streaming problem, we assume that we deal with a large amount of
data and limited main memory for processing it. The following is the typical
scenario with which we will deal. We have a sequence of items I1, I2, . . . , In
that we see one at a time, and after a single pass (or sometimes a few passes),
we will �nd a function of (I1, . . . , In). We assume that we don't have enough
space to store all the items; this may mean that we cannot compute the
function exactly and we trade space for an approximation.

The two problems we start with are:

1. Given a sequence of n bits, �nd n (the length of the stream). In this
problem, the value of the bits does not matter, and we can clearly do
this with space of dlog2 ne bits, which is also required to store the exact
value of n.

2. Given a stream of n numbers, which we know to be in {1, 2, . . . ,m},
�nd the number d ≤ m of distinct elements in the stream. We can

1

solve this problem exactly using a m bit vector, where we increment
the ith bit when we see the number i. We will aim to instead �nd an
approximate value of d using just O(logm) bits.

3 Algorithm for �nding the stream length

Since dlog2 ne bits are both necessary and su�cient to count up to n, it
appears that there is nothing more to this problem; however by using an
implicit representation, we can use O(log log n) bits of working memory to
�nally output an approximate value of n; the �nal output alone will use log2 n
bits and to �nd this value we only use O(log log n) bits.

Firstly, we note that the number dk = log2 ne (number of bits in n) itself can
be stored using O(log log n) bits, and if we can �nd this value, then we can
output 2k, which satis�es n ≤ 2k ≤ 2n and is hence an approximation of n.

In order to keep track of the value of log2 n, we will use a counter. Note
that the value of this counter must be incremented whenever the length of
the stream doubles. Now we use the idea of incrementing the counter with a
probability p(C), which we allow to depend on C, the value of the counter.

We know that the expected time for the counter to increment is
1

p(C)
, and

so we want this to be i when the number of items increases from i to 2i.

Thus, we deduce that we should choose p(C) =
1

i
, but remembering that

we don't know the value of i and that we want 2C to approximate i, we set

p(C) =
1

2C
.

Thus, the algorithm (due to Morris) is:

• Initialize C = 0.

• On seeing a new bit/item, increment C with probability
1

2C
.

• When the stream ends, output 2C as the approximation to the length
of the stream.

We must now analyze the probability that the value output is an approxi-
mation of n, and also estimate how good the approximation is.

2

De�nition We say that an algorithm is a (ε, δ) approximation for a value v
if the algorithm outputs a value w such that:

Pr[|w − v| > (1 + ε)v] ≤ δ.

Later we will show that Morris' algorithm is a (c1, c2) approximation for a
constant c; further we can boost both the approximation and the correctness
probability by maintaining several independent counters and outputing the
median of all the counters. Using the mean works, but it turns out that the
median gives a better approximation.

In class, we de�ned two quantities: C(i), which is the value of the counter
after seeing i items; and D(i), which is the number of items after which
the counter's value becomes i. We have E[D(i)] = E[D(i − 1)] + 2i−1 and
D(1) = 1, which gives E[D(i)] = 2i.

Also,

E[2C(i)] =
∑
1≤k≤i

2kPr[C(i) = k]

and

Pr[C(i) = k] =
1

2k−1
Pr[C(i− 1) = k − 1] +

(
1− 1

2k

)
Pr[C(i− 1) = k].

Exercise: Using the above relations, show that E[2C(i)] = i.

4 Idea for counting distinct elements

Suppose that we can compute a function h : {1, 2, . . . ,m} → [0, 1] such that
each h(i) is uniformly distributed and distinct h(i)s are independent. Then if
x1, . . . , xn are the elements of the stream, we can compute the following: Let

m = min{h(x1), h(x2), . . . , h(xn)}. Now we have E[m] =
1

d+ 1
, and hence

the output
1

m
− 1 should be a good approximation to the number of distinct

elements.

However, we have the following issues: �rstly, approximations when we in-
volve real number computation; secondly, how to choose such a randomly
behaving function.

3

To address the �rst issue, the values that we compute will also have the range
{1, 2, . . . ,M} (instead of [0, 1]). To address the second issue, we will use a
family of 2-universal hash functions. In a related approach, we will also
compute the maximum number of leading or trailing zeroes of the hashed
values. Note that if the maximum number of leading zeroes is r, then the

minimum value that we've seen is at most 2dlog2 me−r ∼ m

2r
.

4

