Asymptotic Notation: The Little-Oh

When comparing two functions, we are often able to say something stronger than f(n) = O(g(n)). We may find that g(n) grows so much faster than f(n) that the ratio g(n)/f(n) goes to ∞ as n goes to infinity. This is captured in the following definition.

Definition We say that f(n) = o(g(n)) if $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$.

For example, we have $5n^2 + 100n - 6 = o(n^3)$. The following connections with the Big-Oh notation are why they are relevant to us.

Proposition 1 :

(i) If
$$f(n) = o(g(n))$$
, then $f(n) = O(g(n))$.
(ii) If $f(n) = o(g(n))$, then $g(n)$ is NOT $O(f(n))$.

The second part of proposition 1 implies, for example, that $n^3 = O(n^2)$ is false. The implication of the first part is that taking limits of ratios is often a quick and convenient way to compare functions.

The Little-Oh Notation also satisfies the three properties of the Big-Oh, from the second notes: Linearity, Transitivity, and Multiplication on both sides. In fact, it satisfies transitivity even when one of the relations is the weaker Big-Oh.

Proposition 2 If f(n) = O(g(n)) and g(n) = o(h(n)), then f(n) = o(h(n)). If f(n) = o(g(n)) and g(n) = O(h(n)), then f(n) = o(h(n)).