Asymptotic Notation

Asymptotic Upper Bound:

Definition For two functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$, we say that $f(x)=O(g(x))$ if there exist $x_{0} \in \mathbb{R}$ and $c>0$ such that for every $x>x_{0}$, we have:

$$
f(x) \leq c g(x) .
$$

The informal meaning is that the function f grows not faster than g for all sufficiently large x. The same definition holds good for any subdomain of \mathbb{R}; in particular, for the analysis of algorithms, we usually consider functions defined on the set of natural numbers.
An example: We shall show that $4 n^{3}+100 n^{2}+10=O\left(n^{3}\right)$.
To prove this directly (using the definition), we should find constants n_{0} and $c>0$ such that $4 n^{3}+100 n^{2}+10 \leq c n^{3}$ for $n>n_{0}$. We can easily check that the constants $c=114$ and $n_{0}=1$ work. Indeed, for $n>1$, we have $4 n^{3}=4 n^{3}, 100 n^{2}<100 n^{3}$ and $10<10 n^{3}$. Adding the three inequalities, we get the desired result.

However, such direct proofs and finding explicit constants (c, n_{0}) is too cumbersome to do all the time, so we will develop a collection of useful results and tricks to compare the growth of two functions.

