Asymptotic Notation: Compare Logarithms

Proposition 1 Suppose that $\lim_{n\to\infty} g(n) = \infty$ and $\log_2 f(n) = o(\log_2 g(n))$. Then $f(n)^a = o(g(n)^b)$ for a, b > 0.

Examples:

1. $(\log_2 n)^{100} = o(n^{0.01}).$

Proof: Consider their logarithms $f(n) = 100 \log_2 \log_2 n$ and $g(n) = 0.01 \log_2 n$. We have f(n) = o(g(n)), and combining this with Proposition 1 gives the result. It also follows directly from Proposition 2.

2. $n^{\log_2 n} = o(2^{\sqrt{n}}).$

Proof: Consider their logarithms $f(n) = (\log_2 n)^2$ and $g(n) = \sqrt{n}$. We have f(n) = o(g(n)) and applying Proposition 1 gives the result. To see why f(n) = o(g(n)), substitute $n = e^k$ so that it is equivalent to $k^2 = o(e^{k/2})$, which we know to be true from Note 4.