PHYSICS OPPORTUNITIES AT MUON COLLIDERS Tao Han, University of Pittsburgh

 ANOMALIES 2021 INTERNATIONALCONFERENCE
 भारतीय प्रौद्योगिकी संस्थान हैद्दराबाद Indian Institute of Technology liyderabad

Contents:

1. A Higgs factory
2. A Multi-TeV Muon Collider

- SM expectations:
- QED \& QCD
- EW physics at ultra-high energies
- Precision Higgs measurement
- Beyond the SM:
- WIMP Dark Matter
- Extended Higgs sector

Lots of recent works!
 -- my apologies not to cover properly

D. Buttazzo, D. Redogolo, F. Sala, arXiv:1807.04743 (VBF to Higgs)
A. Costantini, F. Maltoni, et al., arXiv:2005.10289 (VBF to NP)
M. Chiesa, F. Maltoni, L. Mantani, B. Mele, F. Piccinini, and X. Zhao, arXiv:2005.10289 (SM Higgs)
R. Capdevilla, D. Curtin, Y. Kahn, G. Krnjaic, arXiv:2006.16277; arXiv:2101.10334 (g-2, flavor)
P. Bandyopadhyay, A. Costantini et al., arXiv:2010.02597 (Higgs)
D. Buttazzo, P. Paradisi, arXiv:2012.02769 (g-2)
W. Yin, M. Yamaguchi, arXiv:2012.03928 (g-2)
R. Capdevilla, F. Meloni, R. Simoniello, and J. Zurita, arXiv:2012.11292 (MD)
D. Buttazzo, F. Franceschini, A. Wulzer, arXiv:2012.11555 (general)
G.-Y. Huang, F. Queiroz, W. Rodejohann,
arXiv:2101.04956; arXiv:2103.01617 (flavor)
W. Liu, K.-P. Xie, arXiv:2101.10469 (EWPT)
H. Ali, N. Arkani-Hamed, et al, arXiv:2103.14043 (Muon Smasher's Guide)

Richard Ruiz et al., arXiv:2111.02442 (MadGraph5)

Muon Accelerator Program map.fnal.gov
Transverse ionization cooling achieved by MICE in 2019.
LEMMA: $\mathrm{e}^{+} \mathrm{e}^{-}($at rest $) \rightarrow \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}$(at threshold)

Low EMittance Muon Accelerator web.infn.it/LEMMA

https://arxiv.org/abs/1907.08562; J.P. Delahauge et al., arXiv:1901.06150

Collider benchmark points:

- The Higgs factory: Parameter

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{cm}}=\mathrm{m}_{\mathrm{H}} \\
& L \sim 1 \mathrm{fb}^{-1} \mathrm{yr} \\
& \Delta \mathrm{E}_{\mathrm{cm}} \sim 5 \mathrm{MeV}
\end{aligned}
$$

CoM Energy
Avg. Luminosity
Beam Energy Spread
Higgs Production $/ 10^{7}$ sec
Circumference

$$
\begin{array}{cc}
\text { Units } & \text { Higgs } \\
\mathrm{TeV} & 0.126 \\
10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} & 0.008 \\
\% & 0.004 \\
& 13,500 \\
\mathrm{~km} & 0.3
\end{array}
$$

- Multi-TeV colliders:

Lumi-scaling scheme: $\boldsymbol{\sigma} L \sim$ const.

$$
L \gtrsim \frac{5 \text { years }}{\text { time }}\left(\frac{\sqrt{s}_{\mu}}{10 \mathrm{TeV}}\right)^{2} 2 \int_{10^{35} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}}^{1 \mathrm{ab}^{-1} / \mathrm{yr}}
$$

The aggressive choices:

$\sqrt{s}=3,6,10,14,30$ and $100 \mathrm{TeV}, \quad \mathcal{L}=1,4,10,20,90$, and $1000 \mathrm{ab}^{-1}$ European Strategy, arXiv:1910.11775; arXiv:1901.06150; arXiv:2007.15684.

1. A Higgs FACtory

Resonant Production:

$$
\begin{aligned}
\sigma\left(\mu^{+} \mu^{-} \rightarrow h \rightarrow X\right)= & \frac{4 \pi \Gamma_{h}^{2} \operatorname{Br}\left(h \rightarrow \mu^{+} \mu^{-}\right) \operatorname{Br}(h \rightarrow X)}{\left(\hat{s}-m_{h}^{2}\right)^{2}+\Gamma_{h}^{2} m_{h}^{2}} \\
\sigma_{\text {peak }}\left(\mu^{+} \mu^{-} \rightarrow h\right) & =\frac{4 \pi}{m_{h}^{2}} B R\left(h \rightarrow \mu^{+} \mu^{-}\right) \\
& \approx 41 \mathrm{pb} \text { at } m_{h}=125 \mathrm{GeV}
\end{aligned}
$$

About $\mathrm{O}(40 \mathrm{k})$ events produced per fb^{-1}

At $\mathrm{m}_{\mathrm{h}}=125 \mathrm{GeV}, \Gamma_{\mathrm{h}}=4.2 \mathrm{MeV}$

$$
\begin{aligned}
& \frac{\exp \left[-(\sqrt{\hat{s}}-\sqrt{s})^{2} /\left(2 \sigma_{\sqrt{s}}^{2}\right)\right]}{\sqrt{2 \pi} \sigma_{\sqrt{s}}} \quad \frac{4 \pi \Gamma(h \rightarrow \mu \mu) \Gamma(h \rightarrow X)}{\left(\hat{s}-m_{h}^{2}\right)^{2}+m_{h}^{2}\left[\Gamma_{h}^{\text {bot }}\right]^{2}} \\
& \sigma_{\text {eff }}(s)=\int d \sqrt{\hat{s}} \frac{d L(\sqrt{s})}{d \sqrt{\hat{s}}} \sigma\left(\mu^{+} \mu^{-} \rightarrow h \rightarrow X\right) \\
& \propto \begin{cases}\Gamma_{h}^{2} B /\left[\left(s-m_{h}^{2}\right)^{2}+\Gamma_{h}^{2} m_{h}^{2}\right] & \left(\Delta \ll \Gamma_{h}\right), \\
B \exp \left[\frac{-\left(m_{h}-\sqrt{s}\right)^{2}}{2 \Delta^{2}}\right]\left(\frac{\Gamma_{h}}{\Delta}\right) / m_{h}^{2} & \left(\Delta \gg \Gamma_{h}\right) .\end{cases}
\end{aligned}
$$

"Muon Collider Quartet": Barger-Berger-Gunion-Han PRL \& Phys. Report (1995)
$R=0.01 \%(\Delta=8.9 \mathrm{MeV}), L=0.5 \mathrm{fb}^{-1}$,
Snowmass point: $2.5 \mathrm{fb}^{-1}$

TH, Liu: 1210.7803;
Greco, TH, Liu: 1607.03210

$$
\sqrt{s}(\mathrm{GeV})
$$

Ideal, conceivable case: $\left(\Delta=5 \mathrm{MeV}, \quad \Gamma_{\mathrm{h}} \approx 4.2 \mathrm{MeV}\right)$

- Breit-Wigner
- Gaussian Overlap
- $\sigma_{\text {eff }}$

An optimal fitting would reveal Γ_{h}

Achievable accuracy at the Higgs factory:

TABLE I. Effective cross sections (in pb) at the resonance $\sqrt{s}=m_{h}$ for two choices of beam energy resolutions R and two leading decay channels, with the SM branching fractions

R (\%)	$\begin{gathered} \mu^{+} \mu^{-} \rightarrow h \\ \sigma_{\text {eff }}(\mathrm{pb}) \end{gathered}$	$h \rightarrow b \bar{b}$		$h \rightarrow W W^{*}$	
		$\sigma_{\text {Sig }}$	$\sigma_{\text {Bkg }}$	$\sigma_{\text {Sig }}$	$\sigma_{\text {Bkg }}$
0.01	16	76		3.7	
0.003	38	18	15	5.5	0.051

Good $\mathrm{S} / \mathrm{B}, \mathrm{S} / \sqrt{ } \mathrm{B} \rightarrow \%$ accuracies
Table 3
Fitting accuracies for one standard deviation of Γ_{h}, B and m_{h} of the SM Higgs with the scanning scheme for two representative luminosities per step and two benchmark beam energy spread parameters.

$\Gamma_{h}=4.07 \mathrm{MeV}$	$L_{\text {step }}\left(\mathrm{fb}^{-1}\right)$	$\delta \Gamma_{h}(\mathrm{MeV})$	δB	$\delta m_{h}(\mathrm{MeV})$
$R=0.01 \%$	0.05	0.79	3.0%	0.36
	0.2	0.39	1.1%	0.18
$R=0.003 \%$	0.05	0.30	2.5%	0.14
	0.2	0.14	0.8%	0.07
			TH, Liu: 1210.7803;	
		9.5%	Greco, TH, Liu: 1607.03210	

2. A MULTI-TEV MUON COLLIDER

 What will happen when you turn on a $\mu^{+} \mu^{-}$Smasher?Leading-order $\boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}$annihilation:

- Photon-induced QED cross sections have larger rates $\sigma_{\text {fusion }} \sim \frac{\alpha^{2}}{m_{j 1}^{2}} \log ^{2}\left(\frac{Q^{2}}{m^{2}}\right)$

$$
p_{T}^{j}>\left(4+\frac{\sqrt{s}}{3 \mathrm{TeV}}\right) \mathrm{GeV}, \quad m_{i j}>20 \mathrm{GeV}, \quad\left|\eta_{j}\right|<3.13(2.44)
$$

Quarks/gluons come into the picture via SM DGLAP:

$$
\frac{\mathrm{d}}{\mathrm{~d} \log Q^{2}}\left(\begin{array}{l}
f_{L} \\
f_{U} \\
f_{D} \\
f_{\gamma} \\
f_{g}
\end{array}\right)=\left(\begin{array}{ccccc}
P_{\ell \ell} & 0 & 0 & 2 N_{\ell} P_{\ell \gamma} & 0 \\
0 & P_{u u} & 0 & 2 N_{u} P_{u \gamma} & 2 N_{u} P_{u g} \\
0 & 0 & P_{d d} & 2 N_{d} P_{d \gamma} & 2 N_{d} P_{d g} \\
P_{\gamma \ell} & P_{\gamma u} & P_{\gamma d} & P_{\gamma \gamma} & 0 \\
0 & P_{g u} & P_{g d} & 0 & P_{g g}
\end{array}\right) \otimes\left(\begin{array}{l}
f_{L} \\
f_{U} \\
f_{D} \\
f_{\gamma} \\
f_{g}
\end{array}\right)
$$

Di-jet production: $\gamma \gamma \rightarrow q \bar{q}, \gamma g \rightarrow q \bar{q}, \gamma q \rightarrow g q$, $q q \rightarrow q q(g g), g q \rightarrow g q$, and $g g \rightarrow g g(q \bar{q})$

\rightarrow Jet production dominates at low energies TH, Yang Ma, Keping Xie, arXiv:2103.09844.

Di-jet kinematical features

To effectively separate the QCD backgrounds: $\mathrm{p}_{\mathrm{T}}>60 \mathrm{GeV}$

- EW PDFs at a muon collider:

 "partons" dynamically generated $\frac{\frac{d f_{i}}{d \ln Q^{2}}=\sum_{I} \frac{\alpha_{I}}{2 \pi} \sum_{j} P_{i, j}^{I} \otimes f_{j}}{}$
$\mu^{ \pm}$: the valance. $\ell_{R}, \ell_{L}, \nu_{L}$ and $B, W^{ \pm, 3}:$ LO sea. Quarks: NLO; gluons: NNLO.

TH, Yang Ma, Keping Xie, arXiv:2007.14300

- "Semi-inclusive" processes Just like in hadronic collisions: $\boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-} \rightarrow$ exclusive particles + remnants (10 $\mu^{5} \mu^{-} \rightarrow X$

Underlying sub-processes:

Partonic contributions

$\mu^{+} \boldsymbol{\mu}^{-}$Collider:

"Buy one, get one free" Annihilation + VBF

Unique kinematic features:

- "Recoil mass" \rightarrow "missing mass": $m_{\text {missing }}^{2} \equiv\left(p_{\mu^{+}}+p_{\mu^{-}}-\sum p_{i}^{\text {obs }}\right)^{2}$ $m_{\text {missing }}^{2} \equiv\left(p_{\mu^{+}}+p_{\mu^{-}}-p_{\gamma}\right)^{2}>4 m_{\chi}^{2}$
$m_{\text {missing }}^{2}=\left(p_{\mu+}^{\text {in }}+p_{\mu-}^{\text {in }}-p_{\mu t}^{\text {out }}\right)^{2}>4 m_{X}^{2}$. i

Unavailable in hadronic collisions!

- Forward tagging:

$$
\theta_{\mu} \approx M_{Z} / E_{\mu} \quad \theta_{\mu} \sim 0.02 \approx 1.2^{\circ} \text { at } 10 \mathrm{TeV} .
$$

Tagging is costly: forward detector?

TH, Z. Liu, L.T. Wang, X. Wang: arXiv:2009.11287
TH, D. Liu, I. Low, X. Wang, arXiv:2008.12204

- Precision Higgs Physics

$$
\begin{array}{lr}
\mu^{+} \mu^{-} \rightarrow \nu_{\mu} \bar{\nu}_{\mu} H \quad(W W \text { fusion }), \\
\mu^{+} \mu^{-} \rightarrow \mu^{+} \mu^{-} H \quad(Z Z \text { fusion }) . \\
\text { WWH / ZZH couplings }
\end{array}
$$

HHH / WWHH couplings:

(a)

(b)

(c)

$\sqrt{s}(\mathrm{TeV})$	3	6	10	14	30
benchmark lumi $\left(\mathrm{ab}^{-1}\right)$	1	4	10	20	90
$\sigma(\mathrm{fb}): W W \rightarrow H$	490	700	830	950	1200
$Z Z \rightarrow H$	51	72	89	96	120
$W W \rightarrow H \underline{H}$	0.80	1.8	3.2	4.3	6.7
$Z Z \rightarrow H H$	0.11	0.24	0.43	0.57	0.91
$W W \rightarrow Z H$	9.5	22	33	42	67
$W W \rightarrow t \bar{t} H$	0.012	0.046	0.090	0.14	0.28
$W W \rightarrow Z$	2200	3100	3600	4200	5200
$W W \rightarrow Z Z$	57	130	200	260	420

10M H

 500k HHTH, D. Liu, I. Low, X. Wang, arXiv:2008.12204

Achievable accuracies

$$
\begin{aligned}
& \text { Leading channel } \mathrm{H} \rightarrow \mathrm{bb} \text { : } \\
& \Delta E / E=10 \% . \\
& 10^{\circ}<\theta_{\mu^{ \pm}}<170^{\circ} . \\
& \mathcal{L} \supset\left(M_{W}^{2} W_{\mu}^{+} W^{-\mu}+\frac{1}{2} M_{Z}^{2} Z_{\mu} Z^{\mu}\right)\left(\kappa_{V} \frac{2 H}{v}+\kappa_{V_{2}} \frac{H^{2}}{v^{2}}\right)-\frac{m_{H}^{2}}{2 v}\left(\kappa_{3} H^{3}+\frac{1}{4 v} \kappa_{4} H^{4}\right)
\end{aligned}
$$

Table 7: Summary table of the expected accuracies at 95% C.L. for the Higgs couplings at a variety of muon collider collider energies and luminosities.

19 TH, D. Liu, I. Low, X. Wang, arXiv:2008.12204

- WIMP Dark Matter

(a conservative SUSY scenario)

Consider the "minimal EW dark matter": an EW multi-plet

- The lightest neutral component as DM
- Interactions well defined \rightarrow pure gauge
- Mass upper limit predicted \rightarrow thermal relic abundance

Model (color, $n, Y)$		Therm. target
$(1,2,1 / 2)$	Dirac	1.1 TeV
$(1,3,0)$	Majorana	2.8 TeV
$(1,3, \epsilon)$	Dirac	2.0 TeV
$(1,5,0)$	Majorana	14 TeV
$(1,5, \epsilon)$	Dirac	6.6 TeV
$(1,7,0)$	Majorana	23 TeV
$(1,7, \epsilon)$	Dirac	16 TeV

Cirelli, Fornengo and Strumia: hep-ph/0512090, 0903.3381;
TH, Z. Liu, L.T. Wang, X. Wang: arXiv:2009.11287

Mono-photon channel:

Mono-muon channel:

TH, Z. Liu, L.T. Wang, X. Wang: arXiv:2009.11287

The mass reach for minimal WIMP DM:

$\mathrm{E}_{C M} \approx 14 \mathrm{TeV}$ enough to cover $\mathrm{n} \leq 3$ multiplets.
Higher energy needed to cover higher multiplets.
TH, Z. Liu, L.T. Wang, X. Wang: arXiv:2009.11287

- Heavy Higgs Bosons Production

annihilation

VBF

	production	Type-I	Type-II	Type-F	Type-L
small $\tan \beta<5$	$\begin{gathered} H^{+} H^{-} \\ H A / H H / A A \\ H^{ \pm} H / A \end{gathered}$	$\begin{aligned} & t \bar{b}, \bar{t} \bar{b} \\ & t \bar{t}, t \bar{t} \\ & t b, t \bar{t} \end{aligned}$			
intermediate $\tan \beta$	$\begin{gathered} H^{+} H^{-} \\ H A / H H / A A \\ H^{ \pm} H / A \end{gathered}$	$\begin{aligned} & t \bar{t}, t \bar{t} \\ & t b, t \bar{t} \end{aligned}$	$\begin{aligned} & t \bar{b}, \bar{t} b \\ & t \bar{t}, b \bar{b} \\ & t b, t \bar{t} ; t b, b \end{aligned}$		$t b, \tau \nu_{\tau}$ $t \bar{t}, \tau^{+} \tau^{-}$ $t b, t \bar{t} ; t b, \tau^{+} \tau^{-} ;$ $\tau \nu_{\tau}, t \bar{t} ; \tau \nu_{\tau}, \tau^{+} \tau^{-}$
large $\tan \beta>10$	$\begin{gathered} H^{+} H^{-} \\ H A / H H / A A \\ H^{ \pm} H / A \end{gathered}$	$\begin{aligned} & t \bar{b}, \bar{t} b \\ & t \bar{t}, t \bar{t} \\ & t b, t \bar{t} \end{aligned}$	$\begin{gathered} t b, t b\left(\tau \nu_{\tau}\right) \\ b \bar{b}, b \bar{b}\left(\tau^{+} \tau^{-}\right) \\ t b\left(\tau \nu_{\tau}\right), b \bar{b}\left(\tau^{+} \tau^{-}\right) \end{gathered}$	$\begin{aligned} & t \bar{b}, \bar{t} b \\ & b \bar{b}, b \bar{b} \\ & t b, b \bar{b} \end{aligned}$	$\begin{aligned} & \tau^{+} \nu_{\tau}, \tau^{-} \nu_{\tau} \\ & \tau^{+} \tau^{-}, \tau^{+} \tau^{-} \\ & \tau^{ \pm} \nu_{\tau}, \tau^{+} \tau^{-} \end{aligned}$

TH, S. Li, S. Su, W. Su, Y. Wu, arXiv:2102.08386.

Radiative returns:

$$
\begin{gathered}
\hat{\sigma}\left(\mu^{+} \mu^{-} \rightarrow H\right)=\frac{\pi Y_{\mu}^{2}}{4} \delta\left(\hat{s}-m_{H}^{2}\right)=\frac{\pi Y_{\mu}^{2}}{4 s} \delta\left(\tau-\frac{m_{H}^{2}}{s}\right) \\
f_{\ell / \ell}(x)=\frac{\alpha}{2 \pi} \frac{1+x^{2}}{1-x} \log \frac{s}{m_{\mu}^{2}} \\
\sigma=2 \int d x_{1} f_{\ell / \ell}\left(x_{1}\right) \hat{\sigma}\left(\tau=x_{1}\right)=\frac{\alpha Y_{\mu}^{2}}{4 s} \frac{s+m_{H}^{4} / s}{s-m_{H}^{2}} \log \frac{s}{m_{\mu}^{2}}
\end{gathered}
$$

Depending on the coupling, $\mathrm{M}_{\mathrm{H}} \sim \mathrm{E}_{\mathrm{cm}}$

TH, S. Li, S. Su, W. Su, Y. Wu, arXiv:2102.08386; TH, Z.Liu et al., arXiv:1408.5912.

Summary

- s-channel Higgs factory:
- Direct measurements on $\boldsymbol{Y}_{\mu} \& \boldsymbol{\Gamma}_{\mathrm{H}}$
- Other BRs comparable to $\mathrm{e}^{+} \mathrm{e}^{-}$Higgs factories
- Multi-TeV colliders:
- Unprecedented accuracies for WWH, WWHH, H3, H^{4}
- Bread \& butter SM EW physics in the new territory
- New particle $(\mathrm{Q}, \mathrm{H} \ldots)$ mass coverage $\mathrm{M}_{\mathrm{H}} \sim(0.5-1) \mathrm{E}_{\mathrm{cm}}$
- Decisive coverage for minimal WIMP DM M $\sim 0.5 \mathrm{E}_{\mathrm{cm}}$
- Complementary to Astro/Cosmo/GW \& to FCC-hh:

Exciting journey ahead!

