### **ANOMALIES 2021**

# **LEPTOQUARK MODELS: LHC BOUNDS AND PROSPECTS**

SUBHADIP MITRA (IIIT HYDERABAD)

November 12, 2021

With Arvind, Cyrin, Diganta, Kushagra, Mohit, Tanumoy, Swapnil

### MOTIVATION

### **Lepton Flavour Universality Violation**

LFU is in tension with recent measurements of semi-leptonic B-meson decays.



LQs are colour-triplet bosons with nonzero lepton and baryon numbers. They are promising candidates.



A TeV-scale  $S_1 \equiv (3, 1, 1/3)$  (scalar) or  $U_1 \equiv (3, 1, 2/3)$  (vector) can resolve the anomalies.

### **Bottom-Up Scenarios**

$$\mathscr{L} \supset y_{ij}^L \ \bar{Q}^i \gamma_\mu U_1^\mu L^j + y_{ij}^R \ \bar{d}_R^i \gamma_\mu U_1^\mu \mathcal{C}_R^j + \mathsf{H.c.}$$

The interaction Lagrangians

 $\mathscr{L} \supset y_{ij}^L \bar{Q}_i^c \left( i\tau_2 \right) L_j S_1^{\dagger} + y_{ij}^R \bar{u}_i^c \mathscr{C}_{Rj} S_1^{\dagger} + \mathsf{H.c.}$ 

- y<sup>L</sup><sub>ij</sub> and y<sup>R</sup><sub>ij</sub> are 3 × 3 matrices in flavour space. We assume them to be real. Since we are interested in the R<sub>D</sub><sup>(\*)</sup> and R<sub>K</sub><sup>(\*)</sup> anomalies, we set all components that do not contribute directly to these observables to zero.
- We want to obtain bounds on these models from the existing LHC data. There are direct search mass exclusion bounds on scalar and vector LQs (relatively straightforward). We will use the high-p<sub>T</sub> di-lepton and lepton+MET data to put additional bounds on parameters like couplings and masses (not straightforward).

| 0                                                                      | Integrated                     | Scalar LQ  | Vector LQ, $\kappa = 0$ | Vector LQ, $\kappa = 1$ |
|------------------------------------------------------------------------|--------------------------------|------------|-------------------------|-------------------------|
|                                                                        | Luminosity [fb <sup>-1</sup> ] | Mass [GeV] | Mass [GeV]              | Mass [GeV]              |
| $LQ \to tv \ (\mathscr{B} = 1.0) \ [85, 87]$                           | 35.9 (36.1)                    | 1020 (992) | 1460                    | 1780                    |
| $LQ \rightarrow qv \ (\mathscr{B} = 1.0) \ [85]$                       | 35.9                           | 980        | 1410                    | 1790                    |
| $LQ \to bv \ (\mathscr{B} = 1.0) \ [85, 87]$                           | 35.9 (36.1)                    | 1100 (968) | 1475                    | 1810                    |
| $LQ \rightarrow b\tau / t\nu(\mathscr{B} = 0.5)$ [88]                  | 137                            | 950        | 1290                    | 1650                    |
| $\mathrm{LQ} \rightarrow b\tau \; (\mathscr{B} = 1.0) \; [87] \; \ast$ | (36.1)                         | (1000)     | _                       | _                       |
| $LQ \rightarrow \mu j \ (\mathscr{B} = 1.0) \ [86] *$                  | (139)                          | (1733)     | _                       | _                       |
| $LQ \rightarrow \mu c \ (\mathscr{B} = 1.0) \ [86]$                    | (139)                          | (1680)     | _                       | -                       |
| $LQ \rightarrow \mu b \ (\mathscr{B} = 1.0) \ [86] *$                  | (139)                          | (1721)     | _                       | _                       |

 $U_1$ 

 $S_1$ 

### THE MODELS

# $R_{D^{(*)}}$ Operators

• Contribution to the  $b \rightarrow c \tau \bar{\nu}$  transition

$$\begin{aligned} \mathscr{L} \supset -\frac{4G_{F}}{\sqrt{2}} V_{cb} \left[ \begin{pmatrix} 1 + \mathscr{C}_{V_{L}} \end{pmatrix} \mathscr{O}_{V_{L}} + \mathscr{C}_{S_{L}} \mathscr{O}_{S_{L}} + \mathscr{C}_{T_{L}} \mathscr{O}_{T_{L}} \right] \\ \mathscr{C}_{V_{L}}^{S_{1}} &= \frac{1}{2\sqrt{2}G_{F}V_{cb}} \frac{\left(\lambda_{c\tau}^{L}\right)^{*} \lambda_{b\nu}^{L}}{2M_{S_{1}}^{2}}, \quad \mathscr{C}_{S_{L}}^{S_{1}} &= -\frac{1}{2\sqrt{2}G_{F}V_{cb}} \frac{\left(\lambda_{c\tau}^{R}\right)^{*} \lambda_{b\nu}^{L}}{2M_{S_{1}}^{2}}, \quad \mathscr{C}_{T_{L}}^{S_{1}} &= -\frac{1}{4} \mathscr{C}_{S_{L}}^{S_{1}} \\ \mathscr{C}_{V_{L}}^{U_{1}} &= \frac{1}{2\sqrt{2}G_{F}V_{cb}} \frac{\lambda_{c\nu}^{L} \left(\lambda_{b\tau}^{L}\right)^{*}}{M_{U_{1}}^{2}}, \quad \mathscr{C}_{S_{L}}^{U_{1}} &= -\frac{1}{2\sqrt{2}G_{F}V_{cb}} \frac{2\lambda_{c\nu}^{L} \left(\lambda_{b\tau}^{R}\right)^{*}}{M_{U_{1}}^{2}} \end{aligned}$$

# $R_{K^{(*)}}$ Operators

• A general Lagrangian for  $b \rightarrow s\mu^+\mu^-$  transition

 $\mathscr{L} \supset \frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_{i=9,10,S,P} \left( \mathscr{C}_i \mathcal{O}_i + \mathscr{C}'_i \mathcal{O}'_i \right)$ 

Nonzero Wilson coefficients would also contribute to other observables like  $F_L(D^*)$ ,  $P_{\tau}(D^*)$ , etc.

$$\begin{split} \mathscr{C}_{9}^{U_{1}} &= -\mathscr{C}_{10}^{U_{1}} = \frac{\pi}{\sqrt{2}G_{F}V_{tb}V_{ts}^{*}\alpha} \frac{\lambda_{s\mu}^{L}(\lambda_{b\mu}^{L})^{*}}{M_{U_{1}}^{2}} \\ \mathscr{C}_{S}^{U_{1}} &= -\mathscr{C}_{P}^{U_{1}} = \frac{\sqrt{2}\pi}{G_{F}V_{tb}V_{ts}^{*}\alpha} \frac{\lambda_{s\mu}^{L}(\lambda_{b\mu}^{R})^{*}}{M_{U_{1}}^{2}} \\ \mathscr{C}_{9}^{'U_{1}} &= \mathscr{C}_{10}^{'U_{1}} = \frac{\pi}{\sqrt{2}G_{F}V_{tb}V_{ts}^{*}\alpha} \frac{\lambda_{s\mu}^{R}(\lambda_{b\mu}^{R^{*}})}{M_{U_{1}}^{2}} \\ \mathscr{C}_{S}^{'U_{1}} &= \mathscr{C}_{P}^{'U_{1}} = \frac{\sqrt{2}\pi}{G_{F}V_{tb}V_{ts}^{*}\alpha} \frac{\lambda_{s\mu}^{R}(\lambda_{b\mu}^{L^{*}})}{M_{U_{1}}^{2}} \end{split}$$

**Flavour Ansatz** 

### THE MODELS

 $R_{D^{(*)}}$  Scenarios

• We construct scenarios with one and two nonzero couplings.

| $R_{D^{(*)}}$ scenarios | $\lambda_{cv}^L$                              | $\lambda^L_{b	au}$        | $\lambda^R_{b	au}$ |
|-------------------------|-----------------------------------------------|---------------------------|--------------------|
| RD1A                    | $\lambda_{23}^L$                              | $V_{cb}^* \lambda_{23}^L$ |                    |
| RD1B                    | $V_{cb}\lambda^L_{33}$                        | $\lambda_{33}^L$          | -                  |
| RD2A                    | $V_{cs}\lambda_{23}^L + V_{cb}\lambda_{33}^L$ | $\lambda_{33}^L$          | _                  |
| RD2B                    | $V_{cs}\lambda_{23}^L$                        |                           | $\lambda_{33}^R$   |

The  $S_1$  scenarios will have  $\lambda_{c\tau}^L$ ,  $\lambda_{b\nu}^L$ , and  $\lambda_{c\tau}^R$ 

# $R_{K^{(*)}}$ Scenarios

 $U_1$ 

 $U_1$ 

| $R_{K^{(*)}}$ scenarios | $\lambda^L_{s\mu}$       | $\lambda^L_{b\mu}$        | $\lambda^R_{s\mu}$     | $\lambda^R_{b\mu}$     |
|-------------------------|--------------------------|---------------------------|------------------------|------------------------|
| RK1A                    | $V_{cs}^*\lambda_{22}^L$ | $V_{cb}^* \lambda_{22}^L$ | -                      |                        |
| RK1B                    | $V_{ts}^*\lambda_{32}^L$ | $V_{tb}^* \lambda_{32}^L$ | —                      | -                      |
| RK1C                    | —                        | —                         | $V_{cs}\lambda_{22}^R$ | $V_{cb}\lambda_{22}^R$ |
| RK1D                    | _                        | _                         | $V_{ts}\lambda_{32}^R$ | $V_{tb}\lambda^R_{32}$ |
| RK2A                    | $\lambda_{22}^L$         | $\lambda_{32}^L$          |                        |                        |
| RK2B                    | $\lambda_{22}^L$         | _                         | _                      | $\lambda_{32}^R$       |
| RK2C                    | _                        | $\lambda_{32}^L$          | $\lambda_{22}^R$       | _                      |
| RK2D                    | _                        | _                         | $\lambda_{22}^R$       | $\lambda_{32}^R$       |

 $\lambda_{22}^L$ 

|   |                      |                                                                                                                                                           | <b>S</b> , <b>a</b>                                                                                                         | l                                                       |                           |                                                                                            |                                                                                                                                                                   |                       |
|---|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
|   | In<br>He             |                                                                                                                                                           | he r<br>ere                                                                                                                 |                                                         | s an<br>in                |                                                                                            | ecay modes of LQs wou<br>s.                                                                                                                                       | uld vary.             |
| 2 | In                   | in the                                                                                                                                                    | 2D1.0000                                                                                                                    | m                                                       | :0et                      | · · · · · · · · · · · · · · · · · · ·                                                      | es nonzero contributior                                                                                                                                           | ı                     |
|   | proport<br>effective | ional to the<br>e theory per                                                                                                                              | square of an<br>spective, the                                                                                               | unknov<br>ese two l                                     | vn new coup<br>ook almost | oling (eith<br>the same                                                                    | er $\lambda_{23}^L$ or $\lambda_{33}^L$ ). Hence, from                                                                                                            | m an                  |
| • | Howeve               | er, the domir                                                                                                                                             | nant decay n                                                                                                                | nodes of                                                | $U_1$ in these            | two scen                                                                                   | arios are different                                                                                                                                               |                       |
|   | RD1A                 | $U_1 \to c \nu / s \tau$                                                                                                                                  | (jet + MET                                                                                                                  | $/\tau + jet$                                           | Can be p                  | roduced vi                                                                                 | ia $c$ and $s$ -initiated process                                                                                                                                 | es                    |
|   | RD1B                 | $U_1 \rightarrow t \nu / b \tau$                                                                                                                          | ( <i>t</i> + MET /                                                                                                          | $\tau + jet_{(b)}$                                      | Can be p                  | roduced vi                                                                                 | a <i>b</i> -initiated processes                                                                                                                                   |                       |
| • | Hence,               | one needs to                                                                                                                                              | o analyse the                                                                                                               | e LHC bo                                                | ounds for th              | ne scenari                                                                                 | os differently.                                                                                                                                                   | <i>U</i> <sub>1</sub> |
|   | pp –                 | $ ightarrow \left\{ egin{array}{ccc} U_1 U_1 &  ightarrow & U_1 U_1 \ U_1 U_1 &  ightarrow & U_1 U_1 \ U_1 U_1 &  ightarrow & U_1 U_1 \end{array}  ight.$ | $s\mu s\mu \equiv \mu\mu + s\mu c\nu \equiv \mu + \not\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ | $\left.\begin{array}{c}2j\\T+2j\\2j\end{array}\right\}$ | pp                        | $ ightarrow \left\{egin{array}{c} U_1 U_1 \ U_1 U_1 \ U_1 U_1 \ U_1 U_1 \end{array} ight.$ | $ \rightarrow b\mu b\mu \equiv \mu\mu + 2j  \rightarrow b\mu t\nu \equiv \mu + \not{\!\!\!E}_T + j_t + j  \rightarrow t\nu t\nu \equiv \not{\!\!\!\!E}_T + 2j_t $ | >                     |

 $\lambda_{32}^L$ 

### **PRODUCTION AT THE LHC**

## **Pair Production**

Possible final states. A simple parametrisation to show the relative strengths.

| Nonzero couplings                                |                                  | 0                                 | Siş                              | gnatures                         |                                  |                                                                                | 2          | 2      |
|--------------------------------------------------|----------------------------------|-----------------------------------|----------------------------------|----------------------------------|----------------------------------|--------------------------------------------------------------------------------|------------|--------|
|                                                  | $\tau \tau + 2j$                 | $\tau + \not\!\!\!E_T + 2j$       | $\not\!\!\!E_T+2j$               | $\tau + \not\!\!\!E_T + j_t + j$ | $\not\!\!\!E_T + 2j_t$           | $\not\!\!\!E_T + j_t + j$                                                      | and a grad |        |
| $\lambda_{23}^L$ (Scenario RD1A)                 | 0.25                             | 0.50                              | 0.25                             |                                  | _                                |                                                                                | 3          | کرموری |
| $\lambda_{33}^L$ (Scenario RD1B)                 | 0.25                             | _                                 | _                                | 0.50                             | 0.25                             | _                                                                              | 2          |        |
| $\lambda_{33}^R$                                 | 1.00                             | _                                 | _                                |                                  |                                  |                                                                                | 9          |        |
| $\lambda_{23}^L, \lambda_{33}^L$ (Scenario RD2A) | 0.25                             | ξ                                 | ξ <sup>2</sup>                   | $\frac{1}{2}-\xi$                | $\left(\frac{1}{2}-\xi\right)^2$ | $2\xi\left(rac{1}{2}-\xi ight)$                                               |            |        |
| $\lambda_{23}^L, \lambda_{33}^R$ (Scenario RD2B) | $\left(\frac{1}{2}+\xi\right)^2$ | $2\left(\frac{1}{4}-\xi^2\right)$ | $\left(\frac{1}{2}-\xi\right)^2$ | -                                |                                  |                                                                                |            |        |
|                                                  | $\mu\mu+2j$                      | $\mu + \not\!\!\!E_T + 2j$        | $\not\!\!\!E_T + 2j$             | $\mu + \not\!\!\!E_T + j_t + j$  | $\not\!\!\!E_T + 2j_t$           | $\not\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ |            | $U_1$  |
| $\lambda_{22}^L$ (Scenario RK1A)                 | 0.25                             | 0.50                              | 0.25                             |                                  | _                                | _                                                                              |            |        |
| $\lambda_{32}^L$ (Scenario RK1B)                 | 0.25                             | -                                 | _                                | 0.50                             | 0.25                             | -                                                                              | _          | ~~~    |
| $\lambda_{22}^R$ (Scenario RK1C)                 | 1.00                             | - 0                               |                                  | - 0                              | _                                |                                                                                | q v        |        |
| $\lambda_{32}^R$ (Scenario RK1D)                 | 1.00                             | -                                 |                                  | _                                |                                  |                                                                                |            |        |
| $\lambda_{22}^L, \lambda_{32}^L$ (Scenario RK2A) | 0.25                             | ξ                                 | ξ <sup>2</sup>                   | $rac{1}{2}-\xi$                 | $\left(\frac{1}{2}-\xi\right)^2$ | $2\xi\left(rac{1}{2}-\xi ight)$                                               |            | l      |
| $\lambda_{22}^L, \lambda_{32}^R$ (Scenario RK2B) | $\left(\frac{1}{2}+\xi\right)^2$ | $2\left(rac{1}{4}-\xi^2 ight)$   | $\left(\frac{1}{2}-\xi\right)^2$ |                                  | _                                |                                                                                | q          |        |
| $\lambda_{22}^R, \lambda_{32}^L$ (Scenario RK2C) | $\left(\frac{1}{2}+\xi\right)^2$ |                                   |                                  | $2\left(rac{1}{4}-\xi^2 ight)$  | $\left(\frac{1}{2}-\xi\right)^2$ |                                                                                | -          | - 4    |
| $\lambda_{22}^R, \lambda_{32}^R$ (Scenario RK2D) | 1.00                             | _                                 | _                                | -                                |                                  | _                                                                              |            |        |

 $\xi$  is a free parameter

### **PRODUCTION AT THE LHC**

### **Single and Non-Resonant Productions**



 $U_1$ 

### **RECAST OF LHC DATA**

# ATLAS $\tau\tau$ (139 $fb^{-1}$ ) and CMS $\mu\mu$ (140 $fb^{-1}$ ) Resonance Searches

- All three production modes would lead to  $\ell\ell + jets$  final states.
- The signal to the dilepton searches would be a combination of these three processes + the interference of *t*-channel process with the SMpp  $\rightarrow Z/\gamma \rightarrow \ell \ell$  process.



 The interference is destructive, leading to a reduction of events.

| Mass               | Pa         | ir productio    | n    | Sing       | gle produ         | ction          | t-             | channel             | LQ     | II             | nterferen           | ce      |
|--------------------|------------|-----------------|------|------------|-------------------|----------------|----------------|---------------------|--------|----------------|---------------------|---------|
| (Tev)              | $\sigma^p$ | $\varepsilon^p$ | NP   | $\sigma^s$ | $\mathcal{E}^{S}$ | NS             | $\sigma^{nr4}$ | $\varepsilon^{nr4}$ | Nnr4   | $\sigma^{nr2}$ | $\varepsilon^{nr2}$ | Nnr2    |
|                    |            |                 |      |            | Contrib           | ution to $	au$ | au signal      | [82]                |        |                |                     |         |
| $\lambda_{23}^L =$ | 1 (Scena   | rio RD1A)       |      |            |                   |                |                |                     |        |                |                     |         |
| 1.0                | 40.87      | 2.33            | 8.59 | 58.80      | 3.30              | 35.07          | 70.57          | 7.22                | 183.33 | -232.63        | 3.17                | -266.21 |
| 1.5                | 1.39       | 1.50            | 0.19 | 3.91       | 2.74              | 1.93           | 14.94          | 7.00                | 37.77  | -104.31        | 3.34                | -125.62 |
| 2.0                | 0.08       | 1.01            | 0.01 | 0.44       | 2.50              | 0.20           | 5.04           | 7.25                | 13.19  | -58.79         | 3.28                | -69.57  |
| $\lambda_{33}^L =$ | 1 (Scena   | rio RD1B)       |      |            |                   |                |                |                     |        |                |                     |         |
| 1.0                | 35.67      | 1.69            | 5.43 | 29.00      | 2.57              | 13.46          | 20.20          | 6.21                | 45.26  | -75.02         | 3.08                | -83.41  |
| 1.5                | 1.17       | 1.09            | 0.11 | 1.72       | 2.16              | 0.67           | 4.31           | 6.22                | 9.68   | -33.62         | 2.88                | -33.01  |
| 2.0                | 0.06       | 0.81            | 0.00 | 0.17       | 1.98              | 0.06           | 1.39           | 6.27                | 3.15   | -18.97         | 2.88                | -19.71  |

#### **RECAST OF LHC DATA**



9

The limits on multi-coupling scenarios can be obtained with cross-section parametrisation.

$$\sigma^{p}(M_{U_{1}},\lambda) = \sigma^{p_{0}}(M_{U_{1}}) + \sum_{i}^{n} \lambda_{i}^{2} \sigma_{i}^{p_{2}}(M_{U_{1}}) + \sum_{i\geq j}^{n} \lambda_{i}^{2} \lambda_{j}^{2} \sigma_{ij}^{p_{4}}(M_{U_{1}})$$
$$\mathcal{N}^{p} = \left\{\sigma^{p_{0}} \times \epsilon^{p_{0}} + \sum_{i}^{n} \lambda_{i}^{2} \sigma_{i}^{p_{2}} \times \epsilon_{i}^{p_{2}} + \sum_{i\geq j}^{n} \lambda_{i}^{2} \lambda_{j}^{2} \sigma_{ij}^{p_{4}} \times \epsilon_{ij}^{p_{4}}\right\} \times \mathscr{B}^{2}(M_{U_{1}},\lambda) \times L$$

### **RECAST OF LHC DATA**

# $A\chi^2$ Test

For each distribution, we define the test statistic as

$$\chi^{2} = \sum_{i}^{bins} \left( \frac{\mathcal{N}_{\mathrm{T}}^{i}(M_{U_{1}},\lambda) - \mathcal{N}_{\mathrm{D}}^{i}}{\Delta \mathcal{N}^{i}} \right)^{2}$$

•  $\mathcal{N}_{T}^{i}(M_{U_{1}},\lambda)$  = theory events and  $\mathcal{N}_{D}^{i}$  = the number of observed events in the  $i^{th}$  bin.

$$\mathcal{N}_{\mathrm{T}}^{i}(M_{U_{1}},\lambda) = \left[\mathcal{N}^{p}(M_{U_{1}},\lambda) + \mathcal{N}^{s}(M_{U_{1}},\lambda) + \mathcal{N}^{nr}(M_{U_{1}},\lambda)\right] + \mathcal{N}_{\mathrm{SM}}^{i}.$$

For the error  $\Delta \mathcal{N}^i$ , we use

$$\Delta \mathcal{N}^{i} = \sqrt{\left(\Delta \mathcal{N}_{stat}^{i}\right)^{2} + \left(\Delta \mathcal{N}_{syst}^{i}\right)^{2}}$$

where  $\Delta \mathcal{N}_{stat}^{i} = \sqrt{\mathcal{N}_{D}^{i}}$  and we assume a uniform 10% systematic error

• In every scenario, for some benchmark masses  $M_{U_1} = M_{U_1'}^b$ , we compute the minimum of  $\chi^2$ by varying the couplings. In one-coupling scenarios, we obtain the  $1\sigma$  and  $2\sigma$  CL upper limit on the coupling at  $M_{U_1}^b$  from the values of  $\lambda$  for which  $\Delta \chi^2(M_{U_1}^b, \lambda) = \chi^2(M_{U_1}^b, \lambda) - \chi^2_{min}(M_{U_1}^b)$ equals 1 and 4, respectively.



# The Simple $R_{D^{(*)}}$ Scenarios Are Severely Constrained



# **Recast of ATLAS Scalar LQ Search Data Rules out** $U_1$ **Below ~2 TeV**



13

 $U_1$ 





### **Prospects at the HL-LHC**

- The anomalies hint towards large cross-generational LQ couplings involving thirdgeneration quarks. The  $pp \rightarrow \ell_q \ell_q \rightarrow (t/b)(\tau/\nu) + (t/b)(\tau/\nu)$  modes are already searched for by the ATLAS and the CMS collaborations. Assuming 100% branching ratios, the limits roughly stand at about a TeV or more.
- LQs can be produced in pairs or singly. Large couplings of LQs hint towards non-negligible single productions. Hence, current limits will improve further if large cross-generational couplings are considered.
- The single productions of LQs that exclusively couple with third-generation quarks have tiny single-production cross-sections for perturbative new couplings because of the small b-quark PDF. But, the HL-LHC can help.
- Interesting signature: LQs can decay to a top quark and a charged lepton giving rise to a resonance system of a boosted top quark and a high-p<sub>T</sub> lepton at the LHC.

# **Simple Parametrisation**

Electromagnetic charge conservation forces the LQs that decay to a top quark and a charged lepton to have electromagnetic charge 1/3 or 5/3.

$$S_{1}(\overline{\mathbf{3}},\mathbf{1},1/3): \qquad y_{1\ 3j}^{LL} \left(-\bar{b}_{L}^{C}\nu_{L} + \bar{t}_{L}^{C}\ell_{L}^{j}\right)S_{1} + y_{1\ 3j}^{RR} \bar{t}_{R}^{C}\ell_{R}^{j}S_{1} + \text{H.c.}$$

$$S_{3}(\overline{\mathbf{3}},\mathbf{3},1/3): \qquad -y_{3\ 3j}^{LL} \left[\left(\bar{b}_{L}^{C}\nu_{L} + \bar{t}_{L}^{C}\ell_{L}^{j}\right)S^{1/3} + \sqrt{2}\left(\bar{b}_{L}^{C}\ell_{L}^{j}S_{3}^{4/3} - \bar{t}_{L}^{C}\nu_{L}S^{-2/3}\right)\right] + \text{H.c.}$$

$$R_{2}(\mathbf{3},\mathbf{2},7/6): \qquad -y_{2\ 3j}^{RL} \bar{t}_{R}\ell_{L}^{j}R_{2}^{5/3} + y_{2\ 3j}^{RL} \bar{t}_{R}\nu_{L}R_{2}^{2/3} + y_{2\ j3}^{LR} \bar{\ell}_{R}^{j}t_{L}R_{2}^{5/3*} + y_{2\ j3}^{LR} \bar{\ell}_{R}^{j}b_{L}R_{2}^{2/3*} + \text{H.c.}$$

 $\mathscr{L} \supset \lambda_{\mathscr{C}} \left( \sqrt{\eta_L} \overline{t}_L^C \mathscr{C}_L + \sqrt{\eta_R} \overline{t}_R^C \mathscr{C}_R \right) \phi_1 + \lambda_{\nu} \overline{b}_L^C \nu_L \phi_1 + \tilde{\lambda}_{\mathscr{C}} \left( \sqrt{\eta_L} \overline{t}_R \mathscr{C}_L + \sqrt{\eta_R} \overline{t}_L \mathscr{C}_R \right) \phi_5 + \text{H.c.}$ 

|                       |                       | Sin                 | nplified model [Eqs.                   | (9)–(10)]                    | LQ mode              | els [Eqs. (3)–(8)]                  |                  |                       |
|-----------------------|-----------------------|---------------------|----------------------------------------|------------------------------|----------------------|-------------------------------------|------------------|-----------------------|
| Benchmark<br>scenario | Possible<br>charge(s) | Type<br>of LQ       | Nonzero couplings equal to $\lambda$   | Lepton chirality<br>fraction | Type<br>of LQ        | Nonzero coupling equal to $\lambda$ | Decay<br>mode(s) | Branching<br>ratio(s) |
| LCSS                  | 1/3                   | $\phi_1$            | $\lambda_{\ell'} = \lambda_ u$         | $\eta_L = 1,  \eta_R = 0$    | $S_{2}^{1/3}$        | $-y_{33i}^{LL}$                     | $\{t\ell,b\nu\}$ | {50%, 50%}            |
| LCOS                  | 1/3                   | $\phi_1$            | $\lambda_{\ell}=-\lambda_{ u}$         | $\eta_L = 1,  \eta_R = 0$    | $\overset{s}{S}_{1}$ | $y_{13i}^{LL}$                      | $\{t\ell,b\nu\}$ | {50%, 50%}            |
| RC                    | $\{1/3, 5/3\}$        | $\{\phi_1,\phi_5\}$ | $\{	ilde{\lambda}_\ell,\lambda_\ell\}$ | $\eta_L = 0,  \eta_R = 1$    | $\{S_1, R_2^{5/3}\}$ | $\{y_{13i}^{RR}, y_{2i3}^{LR}\}$    | tl               | 100%                  |
| LC                    | 5/3                   | $\phi_5$            | $	ilde{\lambda}_{\ell}$                | $\eta_L=1,\eta_R=0$          | $R_2^{5/3}$          | $-y_{23j}^{RL}$                     | tl               | 100%                  |

# **Simple Parametrisation**

Similar for vLQs, but the kinetic terms for vLQs contain another free parameter,  $\kappa$ 

Electromagnetic charge conservation forces the LQs that decay to a top quark and a charged lepton to have electromagnetic charge 1/3 or 5/3.

 $S_{1}(\overline{\mathbf{3}},\mathbf{1},1/3): \qquad y_{1\,3j}^{LL} \left(-\bar{b}_{L}^{C}\nu_{L} + \bar{t}_{L}^{C}\ell_{L}^{j}\right)S_{1} + y_{1\,3j}^{RR} \bar{t}_{R}^{C}\ell_{R}^{j}S_{1} + \text{H.c.}$   $S_{3}(\overline{\mathbf{3}},\mathbf{3},1/3): \qquad -y_{3\,3j}^{LL} \left[\left(\bar{b}_{L}^{C}\nu_{L} + \bar{t}_{L}^{C}\ell_{L}^{j}\right)S^{1/3} + \sqrt{2}\left(\bar{b}_{L}^{C}\ell_{L}^{j}S_{3}^{4/3} - \bar{t}_{L}^{C}\nu_{L}S^{-2/3}\right)\right] + \text{H.c.}$   $R_{2}(\mathbf{3},\mathbf{2},7/6): \qquad -y_{2\,3j}^{RL} \bar{t}_{R}\ell_{L}^{j}R_{2}^{5/3} + y_{2\,3j}^{RL} \bar{t}_{R}\nu_{L}R_{2}^{2/3} + y_{2\,j3}^{LR} \bar{\ell}_{R}^{j}t_{L}R_{2}^{5/3*} + y_{2\,j3}^{LR} \bar{\ell}_{R}^{j}b_{L}R_{2}^{2/3*} + \text{H.c.}$ 

 $\mathscr{L} \supset \lambda_{\ell} \left( \sqrt{\eta_L} \overline{t}_L^C \mathscr{\ell}_L + \sqrt{\eta_R} \overline{t}_R^C \mathscr{\ell}_R \right) \phi_1 + \lambda_{\nu} \overline{b}_L^C \nu_L \phi_1 + \tilde{\lambda}_{\ell} \left( \sqrt{\eta_L} \overline{t}_R \mathscr{\ell}_L + \sqrt{\eta_R} \overline{t}_L \mathscr{\ell}_R \right) \phi_5 + \text{H.c.}$ 

|                       |                       | Sin                 | nplified model [Eqs.                       | (9)–(10)]                    | LQ model             | s [Eqs. (3)–(8)]                    |                  |                       |
|-----------------------|-----------------------|---------------------|--------------------------------------------|------------------------------|----------------------|-------------------------------------|------------------|-----------------------|
| Benchmark<br>scenario | Possible<br>charge(s) | Type<br>of LQ       | Nonzero couplings equal to $\lambda$       | Lepton chirality<br>fraction | Type<br>of LQ        | Nonzero coupling equal to $\lambda$ | Decay<br>mode(s) | Branching<br>ratio(s) |
| LCSS                  | 1/3                   | $\phi_1$            | $\lambda_{\ell'} = \lambda_ u$             | $\eta_L = 1,  \eta_R = 0$    | $S_{2}^{1/3}$        | $-y_{33i}^{LL}$                     | $\{t\ell,b\nu\}$ | {50%, 50%}            |
| LCOS                  | 1/3                   | $\phi_1$            | $\lambda_{\ell}=-\lambda_{ u}$             | $\eta_L = 1,  \eta_R = 0$    | $\overset{s}{S}_{1}$ | $y_{13i}^{LL}$                      | $\{t\ell,b\nu\}$ | {50%, 50%}            |
| RC                    | $\{1/3, 5/3\}$        | $\{\phi_1,\phi_5\}$ | $\{	ilde{\lambda}_{\ell},\lambda_{\ell}\}$ | $\eta_L = 0,  \eta_R = 1$    | $\{S_1, R_2^{5/3}\}$ | $\{y_{13i}^{RR}, y_{2i3}^{LR}\}$    | tl               | 100%                  |
| LC                    | 5/3                   | $\phi_5$            | $	ilde{\lambda}_\ell$                      | $\eta_L=1,\eta_R=0$          | $R_2^{5/3}$          | $-y_{23j}^{RL}$                     | tl               | 100%                  |

## **Combined Signal**

- We consider hadronic decays of tops. The characteristic of our signal is the presence of one or two boosted top quarks forming one/two toplike fatjets and two high-p<sub>T</sub> leptons.
- If we define our signal as events containing exactly two high-p<sub>T</sub> same flavor opposite sign leptons and at least one hadronic top-like fatjet in the final state then it would include both single and pair productions and enhance the sensitivity.
- There is some overlap between the pair and the single production processes. One has to be careful to avoid double-counting while computing single productions. We ensure that for any single production process both φ(χ) and φ<sup>†</sup>(x̄) are never on-shell simultaneously.

| Background             | 0        | σ                  | QCD               |
|------------------------|----------|--------------------|-------------------|
| processes              |          | (pb)               | order             |
|                        | Z+ jets  | $6.33 \times 10^4$ | NNLO              |
| v + Jets [30, 37]      | W+ jets  | $1.95 \times 10^5$ | NLO               |
|                        | WW+ jets | 124.31             | NLO               |
| <i>VV</i> + jets [58]  | WZ+ jets | 51.82              | NLO               |
|                        | ZZ+ jets | 17.72              | NLO               |
|                        | tW       | 83.10              | N <sup>2</sup> LO |
| Single <i>t</i> [59]   | tb       | 248.00             | N <sup>2</sup> LO |
|                        | tj       | 12.35              | N <sup>2</sup> LO |
| tt [ <mark>60</mark> ] | tt+jets  | 988.57             | N <sup>3</sup> LO |
| ++V [61]               | ttZ      | 1.05               | NLO+NNLL          |
|                        | ttW      | 0.65               | NLO+NNLL          |



19

3.5

#### **Discovery** $\sigma_{\text{signal}} \approx \sigma_{\text{pair}} \left( M_{\ell_q} \right) + \lambda^2 \sigma_{\text{single}} \left( \lambda = 1, M_{\ell_q} \right)$ $3 \text{ ab}^{-1}$ 1907.11194 2004.01096 $\phi_1$ 3.53.53.5= 0 $\kappa = 0$ $\kappa = 1$ 3 3 3 3 2.52.5 2.52.52 2 2 2 $\prec$ $\prec$ $\overline{}$ .5 1.5 1.5 1.5comb(LC50) -----comb(LC50)1 1 1 comb(RC50)comb(RC50) -----1 comb(LCOS) comb(LC100) comb(LC100)comb(LCSS)consb(1)(RC100) ..... ).5 comb(RC100) -----0.50.50.5 $\operatorname{comb}(\operatorname{RC})$ comba(iR(BR=0.5)-pair(BR=0.5) pair(BR=0.5)pair(BR=1.0)pair(BRain(BR 0 0 pair(BR=1.0)0 1.6 2 2.22.42.62 2.22.42.6 2.6 2.8 2.8 1.8 2.83 2.22.4 2 1.6 2.21.21.4 1.8 2 2.4 2.62.83 $M_{\chi_1}$ (TeV) $M_{\chi_5}$ ( $\mathcal{M}_{\chi_1}$ ) (TeV) $M_{\phi_1}$ (TeV) $\phi_5$ 3.5 3.51 = 03.5 3.5 F 3.5 3.5 $\kappa = 1$ $\kappa = 0$ 3 $\kappa = 1$ 3 3 3 3 2.52.52.52.52.52 $\prec$ 2 $\leq 2$ 2 2 1.5 $\prec$ $\prec$ $\prec$ 1.5 1.5 1.5 1.51 comb(LC50)comb(LC50)1 1 comb(RC50) comb(LC100) comb(LC100) comb(RC) 1 comb(RC50)----comb(LC) comb(RC) par(BR=1.0) 0.5comb(LC100)---- $\operatorname{comb}(\operatorname{RC100})$ 0.5..... 0.5 0.5 comb pair(E 0.562330 623 - 1.0) - 1 6233 623 - 1.0) - 1 comb 0 2.6 pair(BR=2.8) pgingBR=1.0) 2.42.4 0 0 $(BR \pm 1.0)$ 0 $\begin{array}{c} \hline 2.2 & 2.4 & 2.6 \\ 2 & 2.2 & 2.4 \\ M_{\chi_1} (\text{TeV}) & 2.4 & 2.6 \\ M_{\phi_5} (\text{TeV}) & & 2.6 \end{array}$ $2.4M_{\chi_5}$ (TeV2.6 $M_{\chi_5}$ **2.5**eV) 2.22.8 2.22.42 3 2 2.8 1.6 1.4 $\frac{2.8}{2.8}$ $1.0 \\ 1.6$ 1.8 1.23 $M_{\chi_5}$ (TeV) $M_{\chi_1}$ (TeV) $\chi_5$ $\chi_1$ **Scalars** Vectors

#### **Exclusion** $\sigma_{\text{signal}} \approx \sigma_{\text{pair}} \left( M_{\ell_q} \right) + \lambda^2 \sigma_{\text{single}} \left( \lambda = 1, M_{\ell_q} \right)$ $3 \text{ ab}^{-1}$ 1907.11194 2004.01096 $\phi_1$ 3.53.53.5 $\kappa = 0$ $-0\kappa = 1$ 3 3 3 3 2.52.55 2.52 2 2 2 $\prec$ $\overline{}$ 1.5 .5 1.5 1.5comb(LC50) ----comb(LC50) comb(RC50) 1 1 1 comb(RC50) -----1 comb(LCOS) comb(LC100)comb(LC100) omenborne (RC100)... comb(LCSS) comb(RC100) ------0.5 .5 0.5 $\operatorname{com} \mathbb{B} (\mathbb{B} \mathbb{R} = 0.5)$ 0.5comb(RC)pair(BR=0.5) pair(BR=0.5)pair(BR=1.0) pair (BRair BR 0 pair(BR=1.0)0 1.8 2 2.22.42.62.2.3 2.3.4 2.9.7 2.7.8 2.83 2.24.5 2.2.6 2.2.9 2.93 2.22.21.2 1.6 1.8 2 2.4 2.62.8 $M_{\chi_1}$ (TeV) 1.4 3 $M_{\chi_5}$ (TeV) (TeV) $M_{\phi_1}$ (TeV) $\phi_5$ 3.5 3.5 3. 3.53.5 $\kappa = 0$ $\kappa = 1$ $\kappa = 1$ 3 3 3 3 2.52.52.52.5 2.52 $\prec 2$ 2 2 < 1.5 $\prec$ 1.5 1.51. 1.51 comb(LC50) comb(LC50) ..... 1 1 comb(RC50) -----comb(RC50) 1 esimpli(EG00) $\operatorname{comb}(LC)$ comb(LC100) 0.5comb(RC100)compare (RECOO) comb(k6hb(RC) 0.50.5 0.5..... compla(iR(B)R = 1.0)paja(12(18:1-0)5) copair(BC=0.5)\_ 0.50 $\frac{\text{pair}(BR=1.0)}{2.7}$ constr(Re)=1.0)... 2 7 pair(BR=1.0) 2.9 202 2.4 pair(BR=1.0) $\frac{2.6}{M_{\chi_5}}$ (TeV) $M_{\chi_5}$ (TeV) $\begin{array}{c} 2.5 \\ M_{\chi_5} \ ({\rm TeV}) \\ M_{\chi_1} \ ({\rm TeV}) \end{array}$ 2.8 2.9 2.2 2.8 2.22.32.42.52.22.32.42.7 2.8 2.93 0 $M_{2,2}^{2}(\text{TeV}_{2,4})$ 1.8 $\mathbf{2}$ 2.62.8 1.21.4 1.63 $\chi_5$ $\chi_1$ $M_{\phi_5}$ (TeV) **Scalars** Vectors





#### SUMMARY

- The LHC dilepton data can constrain the LQ parameters needed to accommodate the anomalies. The method is generic and, with a suitable parametrisation of the cross-sections, can be used to put bounds on single-coupling and multi-coupling scenarios.
- The single-coupling  $U_1$  scenarios are ruled out or under stress. Multi-coupling scenarios are better. A 1.5 TeV  $U_1$  can explain both  $R_{D^{(*)}}$  and  $R_{K^{(*)}}$  anomalies.
- The anomalies hint towards large cross-generational LQ couplings involving thirdgeneration quarks hinting towards non-negligible single productions. Hence, current limits will improve further if large cross-generational couplings are considered.
- Interesting signature: LQs can decay to a top quark and a charged lepton giving rise to a resonance system of a boosted top quark and a high- $p_T$  lepton at the LHC.



### **ANOMALIES 2021**

## **LEPTOQUARK MODELS: LHC BOUNDS AND PROSPECTS**

SUBHADIP MITRA (IIIT HYDERABAD)

Based on

PRD 104 (2021) 7, 075037 [2106.07605] PRD 104 (2021) 3, 035016 [2101.12069] PRD 101 (2020) 11, 115015 [2004.01096] PRD 101 (2020) 1, 015011 [1902.08108] PRD 100 (2019) 7, 075019 [1907.11194] PRD 99 (2019) 5, 055028 [1811.03561] With Arvind Bhaskar Kushagra Chandak Diganta Das Tanumoy Mandal Cyrin Neeraj Swapnil Raz Mohit Sharma

November 12, 2021