Anomalies: Belle (II) status and prospects

Seokhee Park

seokhee.park@kek.jp

KEK

on behalf of the Belle and Belle II collaboration

2021 November 10th

Anomalies 2021

The year of anomalies

- Various impressive results appear within 2021
 - ▶ BNL + FNAL combined result of $(g-2)_{\mu}$
 - 4.2σ deviation from the SM
 - LHCb run 1+2 data results
 - Evidence (3.1 σ) of $R(K^+)$ anomaly
 - $R(K^*)$ and $R(K^0_s)$ results
 - Belle full data results of $R(K^{(*)})$
- Also, angular analysis of $b \rightarrow s\ell^+\ell^-$,
- **\blacksquare** $R(D^{(*)})$ related studies from BaBar, Belle, and LHCb...
- → NOT ENOUGH YET! More studies are necessary for various channel based on larger data samples.

■ 1040 fb⁻¹ of data were collected by Belle (1999–2010)
 ▶ 711 fb⁻¹ of Y(4S) = 772 × 10⁶ BB

Anomalies 2021

SuperKEKB

- Upgrade of KEKB with same center-of-mass energy ($\Upsilon(nS)$, mainly $\Upsilon(4S)$)
 - ▶ Less beam energy asymmetry (8 \rightarrow 7 GeV e^- and 3.5 \rightarrow 4 GeV e^+)
- Aiming to deliver 50 ab^{-1} (= 50× Belle) of data by 2031.
- Aiming to achieve $6.5 \times 10^{35} \text{ cm}^{-2} \text{s}^{-1}$ (= $30 \times \text{ KEKB}$)
 - 1/20 of beam size (nanobeam scheme)
 - ▶ 150% of beam current

Anomalies 2021

Belle II detector

- Almost new detector compared to Belle
 - Except calorimeter crystal and superconducting magnet
- Performance improvements
 - Better vertexing resolution
 - New and improved trigger system
 - Better p_T resolution

Anomalies 2021

Belle II strengths

- Well known initial state kinematics
- $B\bar{B}$ production from $\Upsilon(4S)$ without extra energy
 - Allow B-tagging method to reconstruct a decay involving undetected particles
 - → Full event interpretation (FEI) method [Comput. Softw. Big Sci. 3, 6 (2019)] for Belle and Belle II
- High reconstruction efficiency and purity for neutral particles
- Low multiplicity processes including τ pair production
 - Single photon trigger is available on Belle II (not in Belle)

Anomalies 2021

$$b \rightarrow s\ell^+\ell^-$$

 $b \rightarrow s\ell^+\ell^-$ and $R(K^{(*)})$

■ In the SM, both penguin and box amplitudes explain the $b \rightarrow s\ell^+\ell^-$ process.

- Highly suppressed, $\mathcal{O}(10^{-7})$ branching fraction
- SM gauge bosons have no lepton flavor preference

$$\rightarrow R(K^{(*)}) = \frac{\mathcal{B}(B \rightarrow K^{(*)}\mu^+\mu^-)}{\mathcal{B}(B \rightarrow K^{(*)}e^+e^-)} = 1 \pm 0.01 \text{ [EPJC 76, 440 (2016)]}$$

However, LHCb 9 fb⁻¹ data show some differences to the SM [arXiv:2103.11769, arXiv:2110.09501]

Signal selection variables

- $M_{\rm bc} = \sqrt{(E_{\rm CM}/2)^2 |\vec{p}|^2}$: beam-energy constraind mass
- $\blacktriangleright \Delta E = E_B E_{\rm CM}/2$
- MVA training (neural network) output of signal and background MC

 $B^+ \rightarrow K^+ \mu^+ \mu^-$ distributions (The other modes are in backup)

- Performing $M_{\rm bc}$, ΔE , and neural network output 3D fit to extract signal
- *R*(*K*) results with various bins
 - ▶ $q^2 \in [0.1, 4.0], [4.0, 8.12], [10.2, 12.8], 14.18 <, [1.0, 6.0], and 0.1 <$
 - ▶ 1.6 σ deviation from the LHCb $R(K^+)$ with $q^2 \in [1.0, 6.0]$ bin

$R(K^{*0})$ and $R(K^{*+})$ at Belle [PRL 126, 121801 (2021)]

• $K^* \ell^+ \ell^-$ is reconstructed as *B*-candidates

- $K^{*+} \to K^+ \pi^0 / K_S^0 \pi^+$ and $K^{*0} \to K^+ \pi^-, K_S^0 \pi^0$ (4-channel)
- Background suppression via NN training and ΔE
- ► *M*_{bc} fitting to extract signal

 $R(K^{*+})$ (left), $R(K^{*0})$ (center), and combined $R(K^{*})$ (right)

$B \rightarrow K^* \ell^+ \ell^-$ angular analysis at Belle [PRL 118 111801]

Anomalies 2021

12/30

$B \rightarrow K^* \ell^+ \ell^-$ angular analysis at Belle [PRL 118 111801]

- P'_5 comparison with the latest LHCb result (μ mode only) [PRL 126 161802]
 - Both data show good agreement with each other

$B^+ \rightarrow K^+ \ell^+ \ell^-$: early benchmark of Belle II

- Preliminary result with 2020 summer dataset of Belle II (63 fb⁻¹)
 - ► FastBDT [Comput Softw Big Sci 1, 2 (2017)] algorithm for background suppression
 - Extract signal via $M_{\rm bc}$ and ΔE 2D fit
 - $\rightarrow 2.7\sigma$ significance of signal yield

■ With 5 – 10 ab⁻¹ may be decisive in proving the LHCb observation

• All R(K), $R(K^*)$, and $R(X_s)$ in low and high q^2 region

Anomalies 2021

$B^+ \rightarrow K^+ v v$ at Belle II: complementary analysis of $R(K^+)$ [PRL 127 181802]

- In the SM, $\mathcal{B}(B \to K \nu \nu) = (4.6 \pm 0.5) \times 10^{-6}$ [Prog. Part. Nucl. Phys. 92, 50 (2017)]
 - No observation yet, the best upper limit is given by BaBar with hadronic + semi-leptonic combined result [PRD 87, 112005]
- **B** \rightarrow *Kvv* experimental results will give access to the new phyics
 - Leptoquarks [PRD 98 055003], axions [PRD 102 015023], dark matter particles [PRD 101 095006]
 - Some of new physics scenarios to explain $R(K^{(*)})$ anomaly also can affect to the $B \to K\nu\nu$
- **63** fb⁻¹ of data are used for the analysis
 - ▶ Inclusive tagging ← higher efficiency than the other tagging method
 - ▶ Signal classification via BDT (event shape, ROE kinematics, signal K⁺ kinematics and vertex)

Anomalies 2021

$B^+ \rightarrow K^+ v v$ at Belle II: complementary analysis of $R(K^+)$ [PRL 127 181802]

- Signal extraction with maximum likelihood fit to the binned data
 - 4.1×10^{-5} at the 90% confidence interval
- In future
 - More channels (K^0 and K^*) with better particle identification (e.g. K_L ID)
 - Better signal selection and systematic study
 - More data
 - Expect SM sensitivity with ~ 10 ab^{-1} , 10% level of uncertainty with ~ 50 ab^{-1} of data

$$b \rightarrow c \ell v$$

Anomalies 2021

$b \rightarrow c \ell v$ and $R(D^{(*)})$

■ *R*(*D*^(*)): Sensitive to the new physics scenarios

- $\blacktriangleright \quad R(D^{(*)}) = \frac{\mathcal{B}(B \to D^{(*)}\tau\nu)}{\mathcal{B}(B \to D^{(*)}\ell\nu)} \ (\ell = e, \mu)$
- New physics can contribute at tree level
 - e.g. charged Higgs, leptoquark, ...
- The SM expectation uncertainties $\sim 1-3\%$
 - Combined result of $R(D^{(*)}) \sim 3.1\sigma$ tension with the SM

Semi-leptonic *B* decay: large branching fractions

- Many missing neutrinos \rightarrow challenging to reconstruct *B*-candidate
- $\rightarrow e^+e^-$ collider approach: *B*-tagging

Anomalies 2021

Two previous Belle analysis results

- ▶ 2015, hadronic tagging with $\tau \rightarrow \ell \nu \bar{\nu}$: $R(D) = 0.375 \pm 0.064 \pm 0.026$, $R(D^*) = 0.293 \pm 0.038 \pm 0.015$
- ▶ 2017, hadronic tagging with $\tau \rightarrow \pi / \rho v$: $R(D^*) = 0.270 \pm 0.035^{+0.028}_{-0.025}$
- \blacksquare The latest Belle result: Semi-leptonic tagging with $\tau \to \ell \nu \bar{\nu}$
 - Belle data analyzed in Belle II analysis software framework to use the FEI (see slide 6)
 - Tag-side of B reconstruction based on hierarchical FastBDT algorithm
 - 4 types of B signal final states: $D^+\ell^-$, $D^0\ell^-$, $D^{*+}\ell^-$, and $D^{*0}\ell^-$
 - $D^{*+} \rightarrow D^0 \pi^+ / D^+ \pi^-$, $D^{*0} \rightarrow D^0 \pi^0$ with 30% of D^0 and 22% of D^+
 - $B \to D^{(*)}\tau v$: signal mode, $B \to D^{(*)}\ell v$: normalization mode

$$\begin{array}{c} \text{Signal mode} \\ \hline B \to D^{(*)} \tau (\to \ell \nu \nu) \nu \\ \hline B \to D^{(*)} \ell \nu \end{array} \xrightarrow{\text{signal-side}} \begin{array}{c} \text{tag-side} \\ \clubsuit & \Upsilon(4S) \end{array} \xrightarrow{\text{blue}} B \to D^{(*)} \ell \nu \end{array}$$

Normalization mode

Anomalies 2021

Background vs. signal and normalization mode: E_{ECL}

- Energy in ECL without reconstructed particle association
- Both signal and normalization make peak near the 0 of E_{ECL}

Signal vs. normalization mode: BDT based classification

▶ Visible energy, square of missing mass, and $\cos \theta_{B,D^{(*)}\ell} \rightarrow O_{cls}$

- Signal extraction from simultaneous fit of extra energy in ECL (*E*_{ECL})
 - ▶ $R(D) = 0.307 \pm 0.037 \pm 0.016$, $R(D^*) = 0.283 \pm 0.018 \pm 0.014 \rightarrow$ The most precise result

 E_{ECL} distribution of $B^0 \rightarrow D^+ \ell^-$ for all O_{cls} (left) and > 0.9 region (right). The other modes are in backup slides.

Belle II projection of $R(D^{(*)})$ [PTEP 12, 123C01 (2019)]

Belle II will be world-leading

Anomalies 2021

$e^+e^- ightarrow \mu^+\mu^- Z'$: Introduction

- **I** $Z'_{L_{\mu}-L_{\tau}}$ can be a solution of $(g-2)_{\mu}$ and $b \rightarrow s\ell^{+}\ell^{-}$ LFU anomaly
 - ► The branching fraction depends on the mass of Z'
- B-factory results
 - ▶ 90% C.L. limits of visible Z' coupling from BaBar (bottom-right figure) [PRD 94 011102]
 - ▶ Belle preliminary result for $Z' \rightarrow \mu^+ \mu^-$ (visible) [arXiv:2109:08596]
 - ▶ The first Belle II physics paper is for $Z' \rightarrow \text{invisible}$ [PRL 124 141801]
 - Two scenarios: $e^+e^- \rightarrow \mu^+\mu^- Z'$ and $e^+e^- \rightarrow e^\pm\mu^\mp Z'$ (LFV Z')

Anomalies 2021

Event selection

- Require four charged tracks (include 2 same-signed muon) and zero sum of charge
- ▶ ECL remaining without track association < 200 MeV
- ▶ 4-muon invarient mass within beam energy ±500 MeV

Signal extraction

The coupling constant g' is obtained by Born cross section

$$g'^2 / g_0'^2 = \sigma_{\text{Born}} / \sigma_{\text{theory}}, \ \sigma_{\text{Born}} = N_{\text{obs}} / (\mathcal{L} \times \mathcal{B} \times \epsilon_{\text{rec}})$$
 (1)

where σ_{theory} is theoritical cross section by g'_0 , \mathcal{L} is int. luminosity, \mathcal{B} is branching ratio of $Z' \rightarrow \mu^+ \mu^-$, and ϵ_{rec} is reconstruction efficiency. N_{obs} is extraced by $M_{Z'}$ fitting

Anomalies 2021

Signal event signature

- Events only with exactly two opposite charged tracks, $\mu^+\mu^-$ or $e^\pm\mu^\mp$ (LFV mode)
- Missing energy with no extra photon
- Recoil mass peak: $M_{\text{rec}}^2 = s + M_{\mu\mu/e\mu}^2 2\sqrt{s}E_{\mu\mu/e\mu}^*$

Background ($e^+e^- \rightarrow \tau^+\tau^-(\gamma)$) suppression

- After basic background rejection (backup), *e*⁺*e*⁻ → τ⁺τ⁻(γ) is the dominant background
 p^{T,min(max)}_{rec}: Transverse momentum of recoil momentum in the direction of low (high) momentum lepton
- Linear discriminant between two variables

Recoil mass spectrums

g' upper limits of 90% C.L.

Anomalies 2021

Short-term projection

With more data, KLM based μID, new triggers, ...

Anomalies 2021

Summary

- Belle II started taking data from 2019 and is succefully running
- In 2021, many anomalies are announced including $b \rightarrow s\ell^+\ell^-$ studies from Belle
 - ▶ Belle published $R(K^+)$, $R(K_S)$, $R(K^*)$, angular analysis results which are consistent with the SM
 - ▶ With 5 10 ab⁻¹ may be decisive in proving the LHCb observation for all R(K), $R(K^*)$, $R(X_s)$ in low and high q^2 region
 - ▶ $B^+ \rightarrow K^+ v v$ result was published and set the 4.1×10^{-5} 90% C.L. of upper limit
 - Belle II can observe the process with 10 ab^{-1} , and has 10% level of uncertainties with 50 ab^{-1} of data
- **Recent** $R(D^{(*)})$ result with semi-leptonic from Belle is the best result in the world
 - With 50 ab^{-1} of data, both uncertainties will be around 3-4%
- **\blacksquare** Z' can be a solution of $(g-2)_{\mu}$ and $b \rightarrow s\ell^+\ell^-$ anomaly
 - ▶ Belle visible preliminary result, 90% upper limits, covers the $(g-2)_{\mu}$ favored region
 - ► Belle II invisible result has not enoutgh statistics yet, but with 50 fb⁻¹ of data, 1-3 GeV of Z' can cover the $(g-2)_{\mu}$ favored region

Anomalies 2021

Backup

Signal selection variables

- $M_{\rm bc} = \sqrt{(E_{\rm CM}/2)^2 |\vec{p}|^2}$: beam-energy constraind mass
- $\blacktriangleright \Delta E = E_B E_{\rm CM}/2$
- MVA training (neural network) output of signal and background MC

 $B^+ \rightarrow K^+ e^+ e^-$ distributions

Signal selection variables

- $M_{\rm bc} = \sqrt{(E_{\rm CM}/2)^2 |\vec{p}|^2}$: beam-energy constraind mass
- $\blacktriangleright \Delta E = E_B E_{\rm CM}/2$
- MVA training (neural network) output of signal and background MC

 $B^+ \rightarrow K^+ \mu^+ \mu^-$ distributions

Signal selection variables

- $M_{\rm bc} = \sqrt{(E_{\rm CM}/2)^2 |\vec{p}|^2}$: beam-energy constraind mass
- $\blacktriangleright \Delta E = E_B E_{\rm CM}/2$
- MVA training (neural network) output of signal and background MC

Signal selection variables

- $M_{\rm bc} = \sqrt{(E_{\rm CM}/2)^2 |\vec{p}|^2}$: beam-energy constraind mass
- $\blacktriangleright \Delta E = E_B E_{\rm CM}/2$
- MVA training (neural network) output of signal and background MC

$B \rightarrow K^* \ell^+ \ell^-$ angular analysis at Belle [PRL 118 111801]

$$\frac{1}{\mathrm{d}\Gamma/\mathrm{d}q^2} \frac{\mathrm{d}^4\Gamma}{\mathrm{d}\cos\theta_\ell \,\mathrm{d}\cos\theta_K \,\mathrm{d}\phi \,\mathrm{d}q^2} = \frac{9}{32\pi} \left[\frac{3}{4} (1-F_L) \sin^2\theta_K + F_L \cos^2\theta_K + \frac{1}{4} (1-F_L) \sin^2\theta_K \cos 2\theta_\ell - F_L \cos^2\theta_K \cos 2\theta_\ell + S_3 \sin^2\theta_K \sin^2\theta_\ell \cos 2\phi + S_4 \sin 2\theta_K \sin 2\theta_\ell \cos \phi + S_5 \sin 2\theta_K \sin \theta_\ell \cos \phi + S_6 \sin^2\theta_K \cos \theta_\ell + S_7 \sin 2\theta_K \sin \theta_\ell \sin \phi + S_8 \sin 2\theta_K \sin 2\theta_\ell \sin \phi + S_9 \sin^2\theta_K \sin^2\theta_\ell \sin 2\phi \right],$$

$$F_L \text{ (longitudinal polarization of } K^* \text{) and } S_l \text{ are functions of } q^2 \text{ only}$$

Important cross-check to the $R(K^*)$ anomaly

- **Two observable** P'_i and Q_i
 - $P'_{i=4,5,6,8} = \frac{S_{j=4,5,7,8}}{\sqrt{F_L(1-F_L)}}$ [JHEP 05 (2013) 137]
 - Free of form-factor uncertainties
 - $Q_i = P_i'^{\mu} P_i'^e$ [JHEP 10 (2016) 075]
 - Lepton-flavor universality test

$B^+ \rightarrow K^+ v v$ at Belle II: complementary analysis of $R(K^+)$ [PRL 127 181802]

■ Analysis approach: inclusive tagging ← higher efficiency than the other tagging method

- Signal side: select the highest p_T track with at least 1 pixel vertex detector hit
- Tag side: reconstruct rest-of-event (ROE) from all remaining tracks and clusters
- Prepare BDT traning input variables
 - event shape variables, ROE kinematics, signal B track kinematics, vertexing information

$B^+ \rightarrow K^+ v v$ at Belle II: complementary analysis of $R(K^+)$ [PRL 127 181802]

Analysis approach

- Two sequential machine-learning-based selections
 - narrow down the second BDT region from the first one
- ► Validate BDT output with $B^+ \rightarrow J/\psi(\mu^+\mu^-)K^+$ data
 - Background-like channel: just $B^+ \rightarrow J/\psi(\mu^+\mu^-)K^+$
 - Signal-like channel: B⁺ → J/ψ(μ⁺μ⁻)K⁺ ignoring dimuon from J/ψ to mimic missing energy, 3-body like kinematics of K⁺

Anomalies 2021

 $E_{\rm ECL}$ disbribution of $B^0 \rightarrow D^+ \ell^-$ for all $O_{\rm cls}$ (left) and > 0.9 region (right).

 $E_{\rm ECL}$ disbribution of $B^- \rightarrow D^0 \ell^-$ for all $O_{\rm cls}$ (left) and > 0.9 region (right).

 E_{ECL} disbribution of $B^0 \rightarrow D^{*+} \ell^-$ for all O_{cls} (left) and > 0.9 region (right).

 $E_{\rm ECL}$ disbribution of $B^- \rightarrow D^{*0} \ell^-$ for all $O_{\rm cls}$ (left) and > 0.9 region (right).

Invisible Z' search at Belle II [PRL 124 141801]

Background suppression: $e^+e^- \rightarrow \mu^+\mu^-(\gamma)$, $e^+e^-\mu^+\mu^-$ (e^+e^- : out of acceptance), $\tau^+\tau^-(\gamma)$

- ► Central drift chamber two-track trigger (including azmimuthal opening angle > 90°)
 - With Bhaha scattering rejection
- Recoil momentum only with EM calorimeter barrel direction
- EM calorimeter based PID (no K_L/μ detector at the time)
 - μ^{\pm} : 0.15 < E < 0.4 GeV, E/p < 0.4
 - e^{\pm} : E > E1.5 GeV, 0.8 < E/p < 1.2
 - E: measued by EM calorimeter, p: measured by drift chamber
- No photon around recoil momentum dirrection
- No π^0 candidate
- ► Total photon energy < 400 MeV
- Transverse momentum (recoil and lepton pair) based selection (see main slide)