Gravitational waves in RS theories

Mariano Quirós

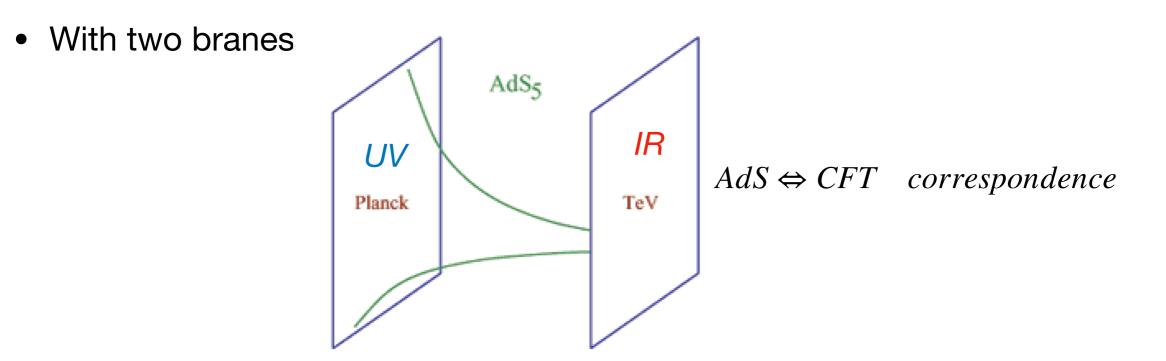
Institute of High Energy Physics (IFAE)

Anomalies 2021, IIT Hyderabad, India 10-12 November, 2021

Based on works done in collaboration with: T. Konstandin, E. Megías, G. Nardini, A. Wulzer (2006-2021)

Warped extra dimensions as solution to the hierarchy problem

- Proposed in 1999 by L. Randall and R. Sundrum (RS) 9905221
- It was based on AdS₅ space with line element $ds^2 = e^{-2A}\eta_{\mu\nu}dx^{\mu}dx^{\nu} dy^2$, A = ky

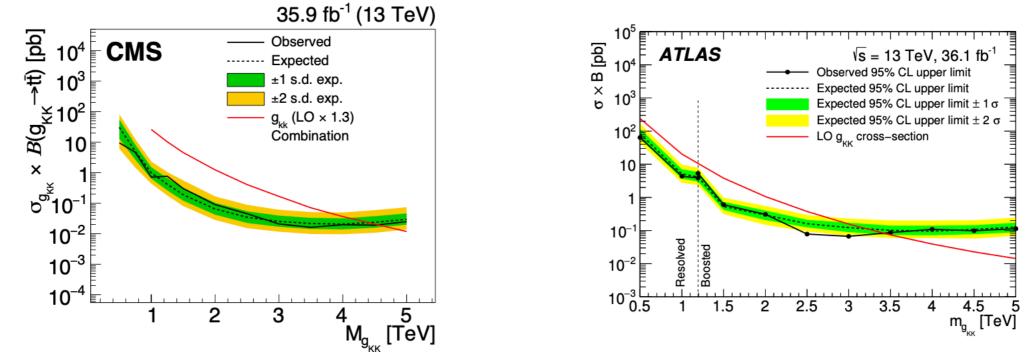


$$k \sim M_{Pl}, \quad \rho \sim TeV = e^{-A(y_1)}k, \quad A(y_1) \sim 35$$

- The Higgs is localized toward the IR brane (composite):
- Heavy (light) fermions are localized toward the IR (UV) brane: composite (elementary)
- The theory predicts TeV KK resonances, localized toward the IR brane (composite)

Collider challenges

 The LHC data are putting severe bounds on the mass of the lightest KK resonances, e.g. for KK gluons:



- These limits point toward the possibility that nature might have chosen values of $ho \gg TeV$

- The warped factor still explaining the relation $ho \Leftrightarrow M_{Pl}$
- But a little hierarchy problem of course would remain for $\rho \gg 1 \, TeV$
- Heavy KK resonances would escape LHC detection ⇒ More energetic colliders...

or by GW's detection...? (this talk)

Phases in the RS theory

- The theory with a warped extra dimension and two branes requires stabilization of the brane distance
- This is achieved by a bulk scalar field \u03c6 with brane potentials, creating an effective potential in terms of the radion field Goldberger-Wise, 9907447
- At low temperature the Higgs is confined: confinement phase
- At high temperature the Higgs melts and there is another phase: deconfinement phase
- The phase transition from the deconfined to the confined phase is first order and can give rise to a stochastic GW background (SGWB).
 P. Creminelli et al., 0107141

The confined phase

The 5-dimensional action of the model reads as

$$S = \int d^5 x \sqrt{|\det g_{MN}|} \left[-\frac{1}{2\kappa^2} R + \frac{1}{2} g^{MN} (\partial_M \phi) (\partial_N \phi) - V(\phi) \right]$$
$$- \sum_a \int_{B_a} d^4 x \sqrt{|\det \bar{g}_{\mu\nu}|} \Lambda_a(\phi) + S_{\text{GHY}}$$

With brane potentials

$$\Lambda_a(\phi) = \Lambda_a + \frac{1}{2}\gamma_a(\phi - v_a)^2$$

EoM can be expressed in terms of the superpotential $W(\phi)$

$$\phi'(r) = \frac{1}{2}W'(\phi), \quad A'(r) = \frac{\kappa^2}{6}W(\phi) \qquad V(\phi) = \frac{1}{8}\left[W'(\phi)\right]^2 - \frac{\kappa^2}{6}W^2(\phi)$$

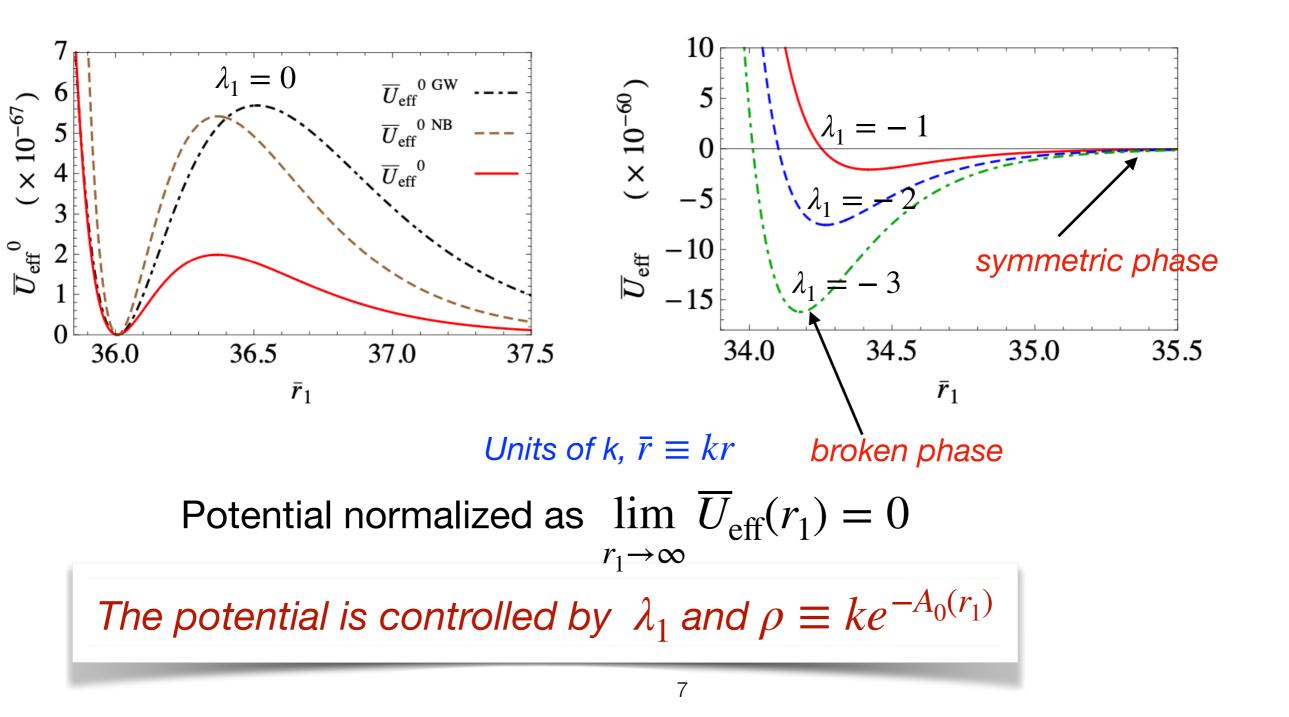
s integration constant

The superpotential $W(\phi)$ is expressed in terms of $W = \sum s^n W_n$ with $W_0(\phi) = \frac{6}{\ell \kappa^2} + \frac{u}{\ell} \phi^2 \qquad \qquad W_1(\phi) = \frac{1}{\ell \kappa^2} \left(\frac{\phi}{v_0}\right)^{4/u} e^{\kappa^2 (\phi^2 - v_0^2)/3}$ leads to solutions for the metric and field ϕ $\bar{\phi}_1(r) = \frac{1}{2u\bar{v}_0} e^{u\bar{r}} \left[e^{(4-2u)\bar{r}} e^{\bar{v}_0^2/3(e^{2u\bar{r}}-1)} - 1 \right]$ $\phi_0(r) = \bar{v}_0 e^{u\bar{r}}$ $A_0(r) = \bar{r} + \frac{\bar{v}_0^2}{12} \left(e^{2u\bar{r}} - 1 \right) \qquad A_1(r) = \frac{1}{12} \left[e^{4A_0(\bar{r})} - 1 \right] + \frac{2+u}{24u} \left(1 - \frac{\phi_0^2}{\bar{v}_0^2} \right)$ $s(\bar{r}_1) = \frac{2u\bar{v}_0^2 e^{-u\bar{r}_1} \left(v_1 / v_0 - e^{u\bar{r}_1} \right)}{e^{(4-2u)\bar{r}_1} e^{\bar{v}_0^2/3} \left(e^{2u\bar{r}_1} - 1 \right)}$

The effective potential as a function of r_1

$$U_{\text{eff}}(r_1) = [\Lambda_1 + W_0(v_1)]e^{-4A_0(r_1)}[1 - 4A_1(r_1)s(r_1)]$$
$$+ s(r_1) \left[e^{-4A_0(r_1)}W_1(v_1) - W_1(v_0) \right]$$

• The effective potential is then a function of the brane distance r_1 and depends on the IR tension λ_1 defined as $\Lambda_1 + W_0(v_1) \equiv 12 \, k M_5^3 \, \lambda_1$ E. Megias et al., 2005.04127



The deconfined phase

 At finite temperature the system allows for an additional 5D gravitational solution with a black hole (BH) singularity located in the bulk

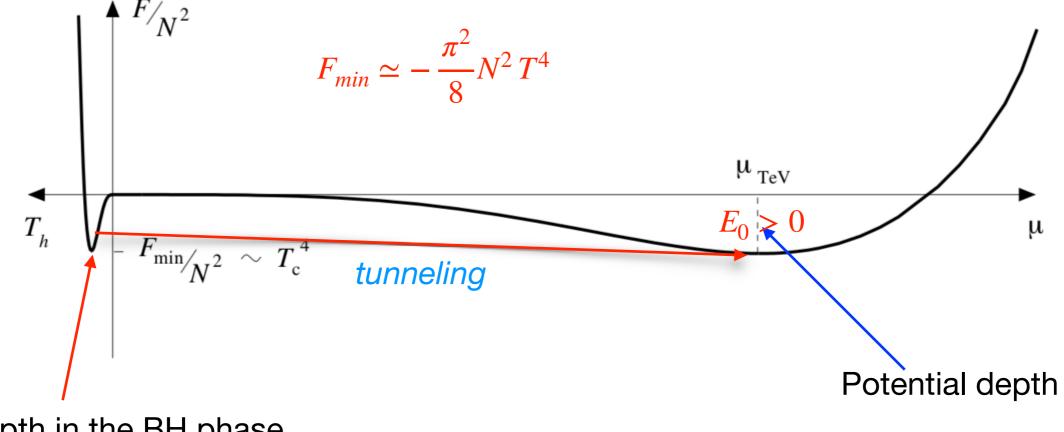
$$ds_{BH}^2 = -\frac{1}{h(y)}dy^2 + e^{-2A(y)}(h(y)dt^2 - d\vec{x}^2)$$

blackening factor $h(y_h) = 0$

- In the AdS/CFT correspondence this BH metric describes the high temperature phase of the system where the radion is sent to its symmetric phase, zero VEV
- The phase transition starts when the free energy of the BH deconfined phase equals the free energy of the confined phase all fields except IR ones
 all fields

$$F_d(T) = E_0 + F_{min} - \frac{\pi^2}{90} g_d^{eff} T^4 \qquad F_c(T) = -\frac{\pi^2}{90} g_c^{eff} T^4$$
Potential depth $E_0 > 0$ Depth in the BH phase

Deconfinement/confinement phase transition



Depth in the BH phase

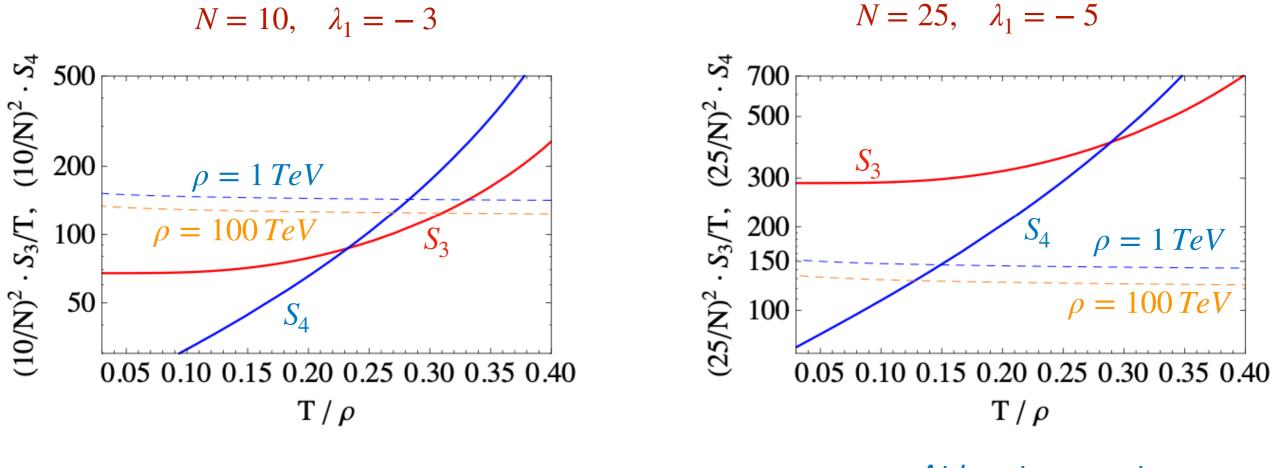
The phase transition

- Phase transition takes place when the bubble nucleation rate equals the universe expansion rate at T_n
- This happens when the euclidean action S_n , with O_n symmetry [n=3 (n=4) high temperature (low temperature)], becomes $\sim 10^2$
- In the thick wall approximation:

$$S_3(T) \simeq \frac{\sqrt{3}N^2 \rho^3}{\pi T \sqrt{E_0 + F_{min}}}, \quad S_4(T) \simeq \frac{9N^2 \rho^4}{4(E_0 + F_{min})}$$
$$Controlled by \lambda_1$$

- The value of nucleation temperature T_n depends on euclidean actions which in turn depend on: (λ_1, N)
- N is the # of degrees of freedom in the holographic theory
- By means of the AdS/CFT duality, N is connected to k through the 5D square gravitational coupling constant $G_5^2 \equiv (k/M_5)^3$ via $\frac{N^2}{16\pi^2} = G_5^{-2}$
- The 5D gravitational theory is weakly coupled in the limit $N \gg 1$
- However in the limit $N \to \infty$ there is no phase transition as $S_n \to \infty \parallel \parallel$

- The idea is to keep N large, but not too much to not forbid the phase transition
- T_n decreases with increasing N and decreasing $|\lambda_1|$

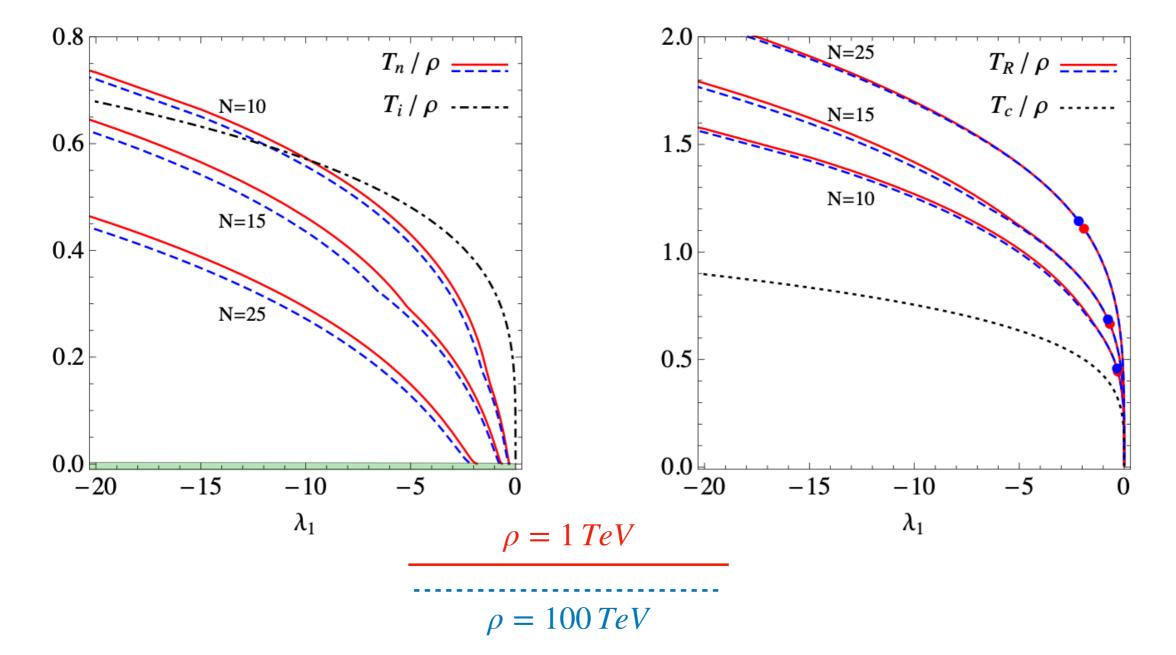


At high temperature

At low temperature

- When the radion $\chi[\langle \chi \rangle = \rho]$ phase transition happens the nucleation temperature is smaller than the VEV: $\rho/T_n \gg 1$ and the phase transition is very strong first order
- The cooling can trigger a brief period of cosmological inflation with few e-folds of inflation
- The universe ends up in the confined phase at the reheat temperature $T_R > T_n$
- In most cases (but not always) the reheat temperature is around the ρ scale

The behavior of the different temperatures as functions of N and λ_1



Gravitational waves

See talks by Hitoshi Murayama and David Weir at this conference

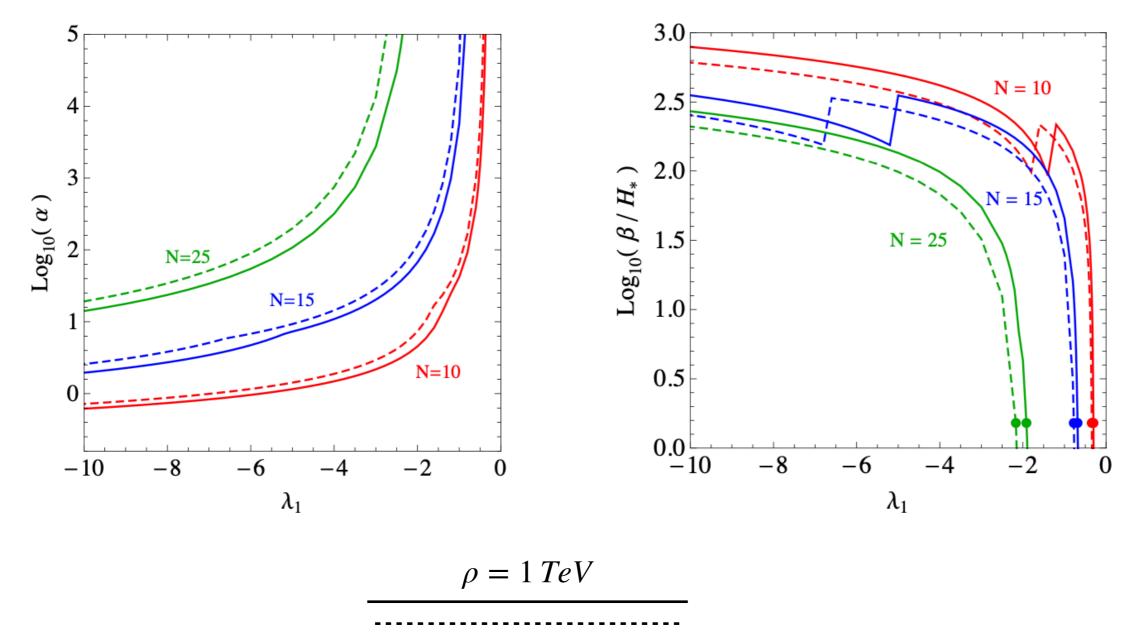
- A cosmological first order phase transition generates a stochastic gravitational wave background (SGWB)
- The power spectrum depends on phase transition quantities
 inverse duration of phase transition

$$\alpha \simeq \frac{F_d(T_n) - F_c(T_n)}{\rho_d(T_n) - E_0} \qquad \qquad \frac{\beta}{H_\star} \simeq T_n \frac{dS_E}{dT}$$
gy density

radiation energy density?

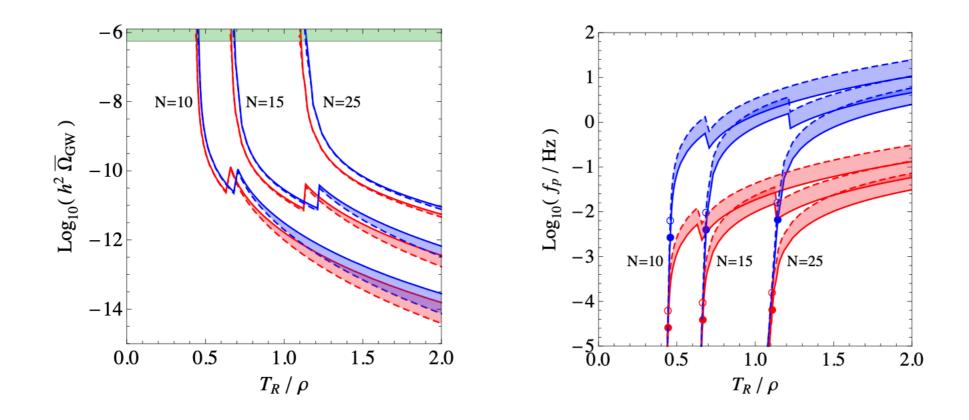
 In the next two decades several GW observatories will have the potential to observe, or constrain, the SGWB produced in the confinement/deconfinement phase transition

 $T=T_{-}$



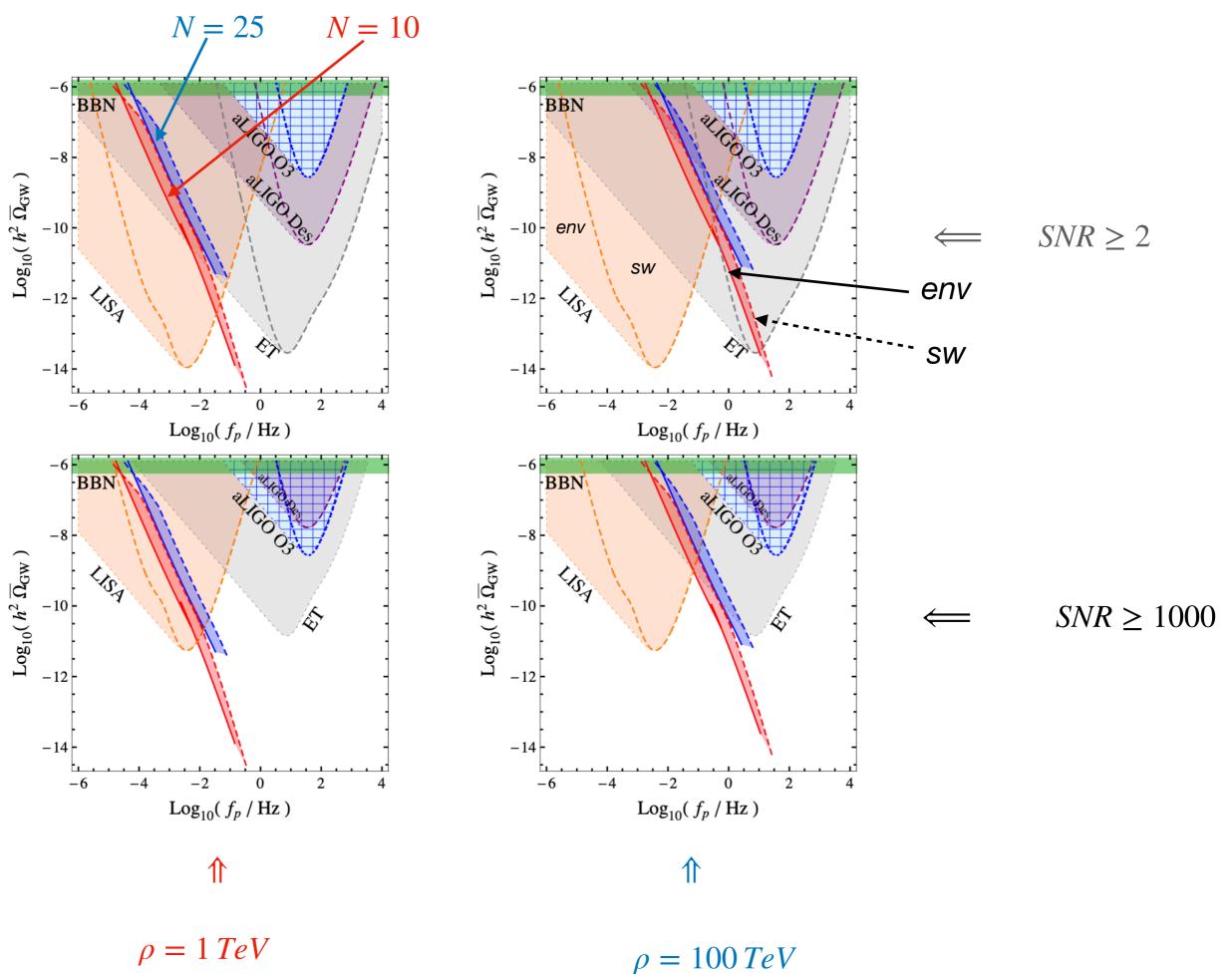
 $\rho = 100 \, TeV$

The amplitude and peak frequency in RS



Strips are between envelop (solid) and sound-wave (dashed) approximations

Red strips are for $\rho = 1 TeV$ Blue strips are for $\rho = 100 TeV$



Conclusions

- Warped extra dimension is an interesting alternative to SUSY to solve the hierarchy problem (dual to CFT,...)
- It triggers a confinement/deconfinement first order phase transition
- Gravitational waves are useful tools to detect the existence of the confinement/deconfinement phase transition

Future interferometers will thus probe heavy resonances

 $m_{KK} \lesssim 10^5 \, TeV \, (LISA)$ $10^2 \, TeV \lesssim m_{KK} \lesssim 10^8 \, TeV \, (aLIGO \, Design)$ $m_{KK} \lesssim 10^9 \, TeV \, (ET)$

E. Megías, G. Nardini, M.Q., 2005.04127, 2103.02705