

Advent of Deep Learning in LHC search and QCD

Partha Konar Physical Research Laboratory, Ahmedabad, India

Anomalies 2021 [Online] @ IIT, Hyderabad Nov 10-12

PRELUDE ML@HEP

- Machine learning is not new for HEP community
- Different low to high level experimental measurements with track finding, calorimeter hit reconstruction, particle identification, reconstruction of energy/ momenta etc
- Multi Variate Analysis (MVA) & Boosted Decision Tree (BDT) used extensively on high level variables with primary focus as Classifier
- Today, I focus from the viewpoint of the emergence of modern deep learning era that greatly outperformed the previous state of arts during last one decade or so
- Some of the crowning moments that shaped the progress....

PRELUDE ML@HEP

- Machine learning is not new for HEP community
- Different low to high level experimental measurements with track

WHY RELEVANT AT LHC ?

- With around 40 mHz branch crossing LHC taking ~ 40 million snaps/s
- Each snapshot encounter large no of particles compounding ~10^8 sensors at different parts of detector
- ML takes role from low level reconstruction, identification, underlying event mitigation to high level identification, extraction, classification and anomaly detection
- Crucial roles in
 - (i) Data reduction based on anomaly detection
 - (ii) Fast accurate reconstruction, identification with multi-sensor data(iii) Significant improvements in classification, regression, goodness fit

MACHINE LEARNING NURAL NETWORK

- Universal function approximation NN with a single hidden layer can approximate any continuous fn to any desired precision
- Search for a function $f: X \to Y$

which optimize some loss function $\mathscr{L}[Y - f_w(x)]$

X: Observable space Y: Target space [low dim]

GOING DEEPER

- Deep learning models with multiple hidden layers solves the need for infinitely large nodes in shallow NN
- Learning scalable with data larger data for better performance
- Deep learning models are now capable of extracting feature directly from low level data
 - End of high level variables from domain experts? Not sure!
- Need for high-end infrastructure GPU, Deep Learning algorithms, large amount of data handling etc
- Problem with Interpretability [unlike BDT], lack of physics understanding for feature intersection — work in progress

MACHINE LEARNING

WORKING WITH CONVOLUTIONAL NEURAL NETWORK

- Most significant innovation in DNN Image processing
- Convolution architecture rely on local and global features with translation invariance (we can also make it learn scale & rotation invariance)
- Image pixels are convoluted with no. of kernels " k_j " $h_{i+1} = \sigma(wx + b) \rightarrow h_{i,j} = \sigma(k_j \cdot h_i + b_j)$
- Same kernel with sharing weight pass through full image, reducing tunable parameter drastically

7

Algorithm first learn edges and shapes
 -> more complex local features
 -> leads to global features

CONVOLUTIONAL NEURAL NETWORK WORKING PRINCIPLE AT LHC DATA

- Detectors calorimeter tower
 => pixels of an image
- Powerful image classification network proved to be extremely successful in jetsubstructure studies

Review :1806.11484, 2103.12226

INVISIBLE HIGGS DECAY @ VECTOR-BOSON FUSION CONVOLUTIONAL NEURAL NETWORK

- ✓ Vector Boson Fusion (VBF) was a novel proposal for Higgs search
- Interesting topology for a VBF
 Two forward jets + large inv. Mass
 No central jet activity between them
 Decay products at the central region

- Qn. Can CNN learn all the feature for such event se Higgs search
- Problem is even more difficult if Higgs is decaying invisibly No additional features from decay product!
 Collider
- Let us try that!

bounds on invisible branching ratio of Higgs much higher than SM prediction!!

INVISIBLE HIGGS DECAY @ VECTOR-BOSON FUSION 3 SET OF ANALYSIS

- A. CMS analysis with 36 fb^-1 data [Based on expert level VBF feature] Simulated Signal and BG => Reproducing CMS "BR upper limit" result
- B. Analysis with sets of three different high level data [ANN]
 1. Kinematic data : Event-kinematics from reconstructed objects

$$\mathcal{K} \equiv \left(\left| \Delta \eta_{jj} \right|, \left| \Delta \phi_{jj} \right|, m_{jj}, MET, \phi_{MET}, \Delta \phi_{MET}^{j_1}, \Delta \phi_{MET}^{j_2}, \Delta \phi_{MET}^{j_1+j_2} \right)$$

2. Radiative: Contains information about the QCD radiation pattern

$$\mathcal{R} \equiv (\mathcal{H}_T^{\eta_C} | \eta_C \in \mathcal{E}) \quad , \quad \mathcal{H}_T^{\eta_C} = \sum_{\eta < |\eta_C|} \mathcal{E}_T$$

3. Combination of above two

 ${\mathcal H}$

C. Analysis with low level calorimeter input data [CNN]

- Hi & Low resolution Calorimetry

Factor of three improvement using the same data!

Hours of CNN training just extracted the relevant underlying feature better than our decades of research!

INVISIBLE HIGGS DECAY @ VECTOR-BOSON FUSION ROLE OF PARTON SHOWER

★ In this simple setup with just two jets : NN minutely learned the kinematic relation & radiation pattern from the data

★ Extra QCD radiation between two tag jets extremely significant!!

★ Central-jet Veto:

Efficiently rejects large QCD backgrounds by vetoing events with additional central jet

★ Qn. How faithful the distribution function which NN learn?

★ True potential unfolds if theoretical predictions are accurate enough.

Images

BEYOND CNN GRAPH NEURAL NETWORK

- Detectors calorimeter hits are typically very sparse and unstructured
- Varying number of reconstructed constituents
- Large number of tunable parameters

Text

- Euclidean image (CNN) to general non-Euclidean domain (GNN) : Geometric deep learning
- Graph: Event as point cloud with each entry containing a vector composed of observables
- Graph == Nodes (data point) + Edges (connections are as important as the data itself)
- Through "Message passing operation" nodes features and edge features are exchanged and provide a sophisticated feature extraction
- GNN is very powerful recent concept mostly unexplored!!
- Infra-red and collinear safe GNN mechanism is constructed for QCD jet study

2109.14636 - PK, Vishal Ng, Michael Spannowsky — See talk by Vishal

EPILOGUE WAY AHEAD

- Deep Learning success story already in NOVA & Ice Cube
- LHC: time of booming effort both from exp & tho community
- Significant progress underway in
 - Jet (substructure) study
 - Event simulation
 - Reconstruction, identification with multi-sensor data
 - Improved trigger mechanism
 - Anomaly detection
 - Analysis classification, regression, goodness fit

✓ CNN based model shown excellent efficiency for invisible Higgs search from VBF, using lowlevel calorimeter image to study the event topology

✓ Accurate simulation of QCD radiation is imperative

INVISIBLE HIGGS DECAY @ VECTOR-BOSON FUSION PRESELECTING CUTS

VBF Jet tag: At least two jets with leading(sub-leading) jet p_T > 80 (40) GeV with |η| < 4.7. At least one of the jets| to have |η_{ji}| < 3.</p>

 $\eta_{j_1} \eta_{j_2} < 0$, $|\Delta \phi_{jj}| < 1.5$, $|\Delta \eta_{jj}| > 1$, $m_{jj} > 200 \text{ GeV}$

- Lepton-veto: No electron(muon) with p_T > 10 GeV in the central region, |η| < 2.5(2.4).</p>
- ▶ **Photon-veto:** No photon with $p_T > 15$ GeV in the central region, $|\eta| < 2.5$
- ▶ τ and b-veto: no tau-tagged jets in $|\eta| < 2.3$ with $p_T > 18$ GeV, and no b-tagged jets in $|\eta| < 2.5$ with $p_T > 20$ GeV.
- Missing E_T(MET): MET > 200 GeV (250 GeV for CMS shape-analysis)
- **MET jet alignment**: $\min(\Delta \phi(\vec{p}_T^{\text{MET}}, \vec{p}_T^{\text{j}})) > 0.5$ for upto four leading jets with $p_T > 30$ GeV with $|\eta| < 4.7$.

INVISIBLE HIGGS DECAY @ VECTOR-BOSON FUSION TOWER IMAGE

Pixel wise calorimeter energy deposits (E_T) converted into pictorial description like 'tower-images' as input to Convolutional Neural Networks

INVISIBLE HIGGS DECAY @ VECTOR-BOSON FUSION TOWER IMAGE

- Pixel wise calorimeter energy deposits (E₁) converted into pictorial description like `tower-images' as input to CNN
- Bin-size: High-resolution (HR) 0.08×0.08 Low-resolution (LR): 0.17×0.17 $\eta \in (-5,5) \& \phi \in (-\pi,\pi)$
- Periodicity in \u03c6 implemented with padded at each boundary with rows from the opposite boundary

HI LEVEL - "KINEMATIC" VARIABLE

HI LEVEL - "RADIATION" VARIABLE

 $\sum_{\eta < |\eta_c|} E_T$

 $H_T^{\eta c}$

 $\widehat{\omega}$

 $\equiv (H_T^{\eta_{\mathcal{C}}}|\eta_{\mathcal{C}}\in$

で

INVISIBLE HIGGS DECAY @ VECTOR-BOSON FUSION LOW LEVEL - EVENT PROCESSING

- Rotate along z-axis such that $\phi_0 = 0$. Two instances of $\phi_0 \in \{\phi_{MET}, \phi_{j_1}\}$.
- Reflect along the xy-plane, such that the leading jet's η is always positive.
- After binning (E_T) and padding in LR and HR : \mathcal{P}_{MET}^{LR} , \mathcal{P}_{MET}^{HR} , \mathcal{P}_{J}^{LR} and \mathcal{P}_{J}^{HR}

INVISIBLE HIGGS DECAY @ VECTOR-BOSON FUSION LOW LEVEL - EVENT PROCESSING

Averaged Images

NETWORK PERFORMANCE

NETWORK PERFORMANCE

- Harder to distinguish S_{QCD} from the QCD dominated (~ 95%) background class (significant S_{QCD} contamination in traditional analysis too)
- For the CNN, W_{QCD} dominates over Z_{QCD} in the first bin?? ⇒ Presence of calorimeter deposits of lepton in regions |η| > 2.5 or in the central regions when it is misidentified (including τ[±]).

UPPER BOUND ON BRANCHING RATIO

			Expected median upper-limit on B.R($h^0 \rightarrow inv$)		
SI.No	Name	Description			
			$L = 36 \text{ fb}^{-1}$	$L=140~fb^{-1}$	$L=300~fb^{-1}$
1.	$m_{jj}(MET>250~{ m GeV})$	reproduced CMS shape analysis	$0.226\substack{+0.093\\-0.063}$	$0.165\substack{+0.082\\-0.056}$	$0.130\substack{+0.089\\-0.027}$
2.	$ \Delta\eta_{jj} (MET>250~{ m GeV})$	$ \Delta\eta_{jj} $ analysis with CMS shape-cuts	$0.200\substack{+0.080\\-0.056}$	$0.128\substack{+0.050\\-0.036}$	$0.106^{+0.041}_{-0.025}$
3.	$m_{jj}(MET>200~{ m GeV})$	<i>m</i> jj shape analysis with weaker cut	$0.191\substack{+0.075\\-0.053}$	$0.116\substack{+0.071 \\ -0.036}$	$0.101\substack{+0.037\\-0.045}$
4.	$ \Delta\eta_{jj} (MET>$ 200 GeV)	$ \Delta\eta_{jj} $ analysis with weaker cut	$0.162\substack{+0.065\\-0.045}$	$0.105\substack{+0.042\\-0.029}$	$0.087\substack{+0.034\\-0.025}$
5.	\mathcal{P}^{LR}_J -CNN	Low-Resolution, $\phi_0 = \phi_{j_1}$	$0.078\substack{+0.030\\-0.022}$	$0.051\substack{+0.020\\-0.014}$	$0.045\substack{+0.017\\-0.013}$
6.	\mathcal{P}^{HR}_{J} -CNN	High-Resolution, $\phi_0 = \phi_{j_1}$	$0.070\substack{+0.027\\-0.020}$	$0.043\substack{+0.017\\-0.012}$	$0.035\substack{+0.013\\-0.010}$
7.	\mathcal{P}_{MET}^{LR} -CNN	Low-Resolution, $\phi_0 = \phi_{MET}$	$0.092\substack{+0.037\\-0.025}$	$0.062\substack{+0.024\\-0.017}$	$0.053\substack{+0.023\\-0.014}$
8.	\mathcal{P}_{MET}^{HR} -CNN	High-Resolution, $\phi_0 = \phi_{MET}$	$0.086^{+0.035}_{-0.024}$	$0.058\substack{+0.023\\-0.016}$	$0.051\substack{+0.020\\-0.014}$
9.	K-ANN	8 kinematic-variables	$0.101\substack{+0.052\\-0.022}$	$0.075\substack{+0.029\\-0.021}$	$0.063\substack{+0.027\\-0.017}$
10.	$\mathcal{R} ext{-ANN}$	16 radiative $H_T^{\eta_C}$ variables	$0.138\substack{+0.055\\-0.039}$	$0.094\substack{+0.036\\-0.027}$	$0.079\substack{+0.032\\-0.022}$
11.	H-ANN	Combination of ${\mathcal K}$ and ${\mathcal R}$ variables	$0.094\substack{+0.038\\-0.026}$	$0.065\substack{+0.026\\-0.018}$	$0.057\substack{+0.022\\-0.015}$

BRIEF DESCRIPTION OF NETWORKS

*R***-ANN** Architecture

After training for 20-1000 epochs, best performing network on the validation data choosen (for each of the 7 networks).