Rare K decay : status and future output H. Nanjo (Osaka U.) for the KOTO collaboration

2021/11/11 Anomalies 2021

Rare kaon decay observables

 $K \rightarrow \pi [ee \text{ or } \mu \mu]$

 $\epsilon'/\epsilon \quad K \to 2\pi^0$

$K \rightarrow \pi \nu \nu$ in SM and Experimental status

 $K_L \to \pi^0 \nu \overline{\nu}$

Calculated BR

Theoretical error

Quarks in loop

 $(3.4 \pm 0.6) \times 10^{-11}$

Buras et al JHEP11(2015)33

Mainly Parameter error from CKM matrix elements

< 2 %

top

Precise and Suppressed SM process(BG) →BSM Physics search(Signal)@

Grossman-Nir bound : (Isospin symmetry in $\Delta I=1/2$ process)

Correlation between K_I and K^+ in $K \rightarrow \pi \nu \nu$ $K_L \to \pi^0 \nu \overline{\nu} \qquad K^+ \to \pi^+ \nu \overline{\nu}$ $\propto \mathscr{A}_{s \to d}$ $\propto |\mathscr{A}_{s \to d}|^2$ $\mathscr{B}(K_L) < 4.3 \times \mathscr{B}(K^+)$

Experimental s

K_L J-PAF

Experiments

Branching ratio

Single Event Sensitivity

(SES)

 $< 3.0 \times 10^{-10}$

7.2 × *PRL*. 1

status ($\mathbf{n} \ K \to \pi \nu \nu$
$ \rightarrow \pi^0 \nu \overline{\nu} $	$K^+ \to \pi^+ \nu \overline{\nu}$
RC KOTO	CERN NA62
$^{-9}(90\% CL)$	$(10.6^{+4.0}_{-3.4} \pm 0.9) \times 10^{-11} (68 \% \text{ CL})$
122,021002(2019) $ 10^{-10} $ 126(2021) 12,121801	0.84 × 10 ⁻¹¹ <i>JHEP</i> 06 (2021) 093

$\mathscr{B}(K^+ \to \pi^+ \nu \nu) / \mathscr{B}(SM)$

Flavor-violating Z' coupling High energy reach

leptoquark, SUSY, charged Higgs... dark sector ...

New physics contributions

Dim.9 $\Delta I = 3/2$ operator

Exotic scenario violating Grossman-Nir bound

NA62 experiment at CERN

Integrated luminosity NA62 Run 1

$K^+ \rightarrow \pi^+ \nu \overline{\nu} : K^+ \rightarrow \pi^+ + \text{nothing}$

Concept of NA62 detector

Vacuum Transverse Size Si Composition

mass assumption

- Decay in flight technique
- High momentum $K^+(75 \text{GeV/c})$
- K+ tracking w/ magnetic field $\rightarrow p_K$
- π + tracking w/ magnetic field $\rightarrow p_{\pi}$

Signal reconstruction $m_{miss}^2 = (P_{K^+} - P_{\pi^+})^2$ P_{π} $\theta_{\pi K}$ $\mathbf{P}_{\mathbf{K}}$ P_{v} $K^+ \to \pi^+ \nu \overline{\nu}$ $m_{miss} = m_{\nu\overline{\nu}}$ $K^+ \rightarrow \pi^+ + \pi^0$ VV) $m_{miss} = m_{\pi^0}$ Br: 21% Photo veto 0.12 Cut kinematic region

Event selection

Background estimation of 2018 data

Background estimation Major decay : data driven (# in signal region / # in control region) Minor decay : MC

		Process	Expected events in R1+R2 (2018 data)
		$K^+ \to \pi^+ \nu \bar{\nu} \ (SM)$	$7.58 \pm 0.40_{\rm syst} \pm 0.75_{\rm ext}$
		Total Background	$5.28^{+0.99}_{-0.74}$
		$K^+ \to \pi^+ \pi^0(\gamma)$	0.75 ± 0.04
		$K^+ \to \mu^+ \nu_\mu(\gamma)$	0.49 ± 0.05
		$K^+ \to \pi^+ \pi^- e^+ \nu_e$	0.50 ± 0.11
1)		$K^+ \to \pi^+ \pi^+ \pi^-$	0.24 ± 0.08
2)		$K^+ \to \pi^+ \gamma \gamma$	< 0.01
2)	2)	$K^+ \to \pi^0 l^+ \nu$	< 0.001
		Upstream background	$3.3^{+0.98}_{-0.73}$

Presented by Riccardo Lollini in FPCP2021

31

11

Collimator to stop such charged pion New collimator was installed in 2018 NA62 run2 : additional tracker + veto

Upstream background

Accidental coincidence / Decay

Results of analysis of 2018 data

Results of NA62 run1 (2016-2018)

35

30

20

15

25

 π^+ momentum [GeV/c]

40

45

2016 : 1 event observed (*PLB* 791(2019) 156) 2017 : 2 events observed (*JHEP* 11(2020)042) 2018 : 17 events observed In total 20 events

 $SES = (0.839 \pm 0.053_{\text{syst}}) \times 10^{-11},$ $N_{\pi\nu\bar{\nu}}^{\rm exp} = 10.01 \pm 0.42_{\rm syst} \pm 1.19_{\rm ext},$ $N_{\text{background}}^{\text{exp}} = 7.03_{-0.82}^{+1.05}.$

 $\mathscr{B}(K^+ \to \pi^+ \nu \overline{\nu}) = (10.6^{+4.0}_{-3.4} \pm 0.9) \times 10^{-11} \ (68 \% \text{ CL})$ Observation with 3.4σ significance Compatible with SM (8.4×10^{-11}) (*JHEP* 06 (2021) 093)

Prospects

• NA62 run2

- Started from Aug. 2021, till 2024
- Measure $\mathscr{B}(K^+ \to \pi^+ \nu \overline{\nu})$ at O(10%) precision • More events with higher beam intensity • Further suppression of the background
- Far future plan
 - Higher beam intensity of SPS is under discussion
 - Factor of 4 more K^+

• New K_L beam line to search for $K_L \to \pi^0 \nu \overline{\nu}$: KLEVER project

KLEVER experiment

K_L**EVER** target sensitivity: 5 years starting Run 4 ~60 SM $K_L \rightarrow \pi^0 vv$ S/B ~ 1 δ BR/BR($\pi^0 vv$) ~ 20%

400-GeV SPS proton beam on Be target at z = 0 m

KOTO experiment at J-PARC

KL beam line

Short-lived particles decay out. Charged particles are swept out.

Narrow neutral beam (K_L , neutron, γ)

Photo during the construction

Primary beam downstream of the target

neutron, γ

KL beam line at 16 degree

Mag

Succoline Succession

collingtor

Signal reconstruction

Signal reconstruction $K_L \to \pi^0 \nu \overline{\nu} \quad \pi^0 + \text{nothing}$ charced Calorimeter K_L magnet 2nd collimator Narrow beam p_{T} π^0 reconstruction from 2γ Signal $\pi^0 P_T$ due to missing $\nu \bar{\nu}$

 Z_{Vtx} blind analysis

Background from K_L decay

Two observable particles in the final state

- Less detector material
- Detector material
 - away from beam
- Detector position

away from signal reigon

Lead/plastic scintillator sandwich counter

KOTO Data Accumulation

(# of proton/spill) \times (30 GeV

Analysis of 2016-18 data

Results of 2016-18 analysis

Phys.Rev.Lett.126(121801)(2021)

No events in the surrounding regions except for the upstream region
New background sources were found
of observed events is consistent to # of backgrounds

K^{\pm} decay Halo $K_L \rightarrow 2\gamma$	$: 0.87 \pm 0.25$ $: 0.26 \pm 0.07$
Others	: 0.09
Total	$: 1.22 \pm 0.26$

Charged kaon background

 K^{\pm} generated in the 2nd collimator due to hadronic interaction $\mathscr{B}(\bar{K}^{\pm} \to \pi^0 e^{\pm} \nu) = 5\%$ π^0 kinematics is similar to the signal

Backward-going $e^{\pm} \rightarrow$ low energy \rightarrow missed due to the detector inefficiency

Charged kaon flux measurement with $K^{\pm} \rightarrow \pi^{\pm} \pi^{0}$

 K_L scatters on the collimator surface Off-axis π^0 decay \rightarrow fake large p_T due to vertex assumption on the beam axis Two photons and nothing else

Halo K_{I} flux was evaluated and number of background is evaluated.

Halo $K_I \rightarrow 2\gamma$ background

Future prospects

Reduction of K^{\pm} **backgrounds toward the next analysis**

PMT array

12µm aluminized

film (reflector)

0.5-mm-square scintillating fibers/ installed in $2021 \rightarrow \times 1/20$

Upgrade with 0.2-mm-thick scintillator planned in 2022 $\rightarrow \times 1/100$

Expected reduction $\times 1/1000$ in total

0.02 events in SM sensitivity

Reduction of halo $K_I \rightarrow 2\gamma$ background

KOTO will reach $O(10^{-11})$ sensitivity

KOTO step-2 with extension of hadron experimental facility

					1		
	FY2021	FY2022	FY2023	FY2024	FY2025		
MR	Upgrade of Magnet PS		construction parallel to beam ope beam-suspension in th				
			The Extension Project of				
HD	x						
		Current Programs with SX Power					
	towards 100kW						
	7						

 $SES: O(10^{-11})$

Time line for $K_I \to \pi^0 \nu \overline{\nu}$ Haliest Scenario FY2027 FY2028 FY2026 eration in the first 3 years, e next 2.5 years f the HEF (6 years) Expanded Programs Hall Extension with more BLs

$SES: O(10^{-13})$

- Rare kaon decay : sensitive to new physics
- World-wide efforts
- $K^+ \to \pi^+ \nu \overline{\nu}$
 - NA62 experiment at CERN
 - run1 (2016-18) $\mathscr{B}(K^+ \to \pi^+ \nu \overline{\nu}) = (10.6^{+4.0}_{-3.4} \pm 0.9) \times 10^{-11} (68 \% \text{ CL})$
 - run2 : 2021-2026 : O(10%) measurement
- $K_L \to \pi^0 \nu \overline{\nu}$
 - KOTO experiment at J-PARC
 - $\mathscr{B}(K_L \to \pi^0 \nu \overline{\nu}) < 3 \times 10^{-9} (90 \% \text{ CL})$
 - will reach SES of $O(10^{-11})$
 - KLEVER (CERN) and KOTO step-2 : aiming at 30-60 SM events observation

