Recent results from LHCb

Mitesh Patel (Imperial College London) Anomalies, 10th Nov 2021

Imperial College London

Introduction

- Interesting set of anomalies have appeared in measurements of B decays :
 - Branching fractions of several $b \rightarrow sll$ processes
 - Angular observables in $B^0 \rightarrow K^{*0}\mu\mu$, $B^+ \rightarrow K^{*+}\mu\mu$
 - Lepton-flavour universality ratios $b \rightarrow sll$ and $b \rightarrow clv$ decays
- Majority of you will be familiar with the measurements themselves – will try and remind you of:
 - the issues in each case
 - what makes us think we have good experimental control
 - what might still be wrong (from an exp'talists perspective)
 Will try and at least connect with the theory issues

b→sll decays

- b→sll decays involve flavour changing neutral currents → loop process
- Best studied decay at LHCb is $B^0 \rightarrow K^{*0} \mu \mu$
- Large number of observables: BF, A_{CP} and angular observables – dynamics can be described by three angles (θ_I, θ_K, φ) and di-μ invariant mass squared, q²

Hadronic Effects

b→sll branching fractions

$BF(B_s \rightarrow \phi \mu \mu)$ update

• LHCb recently presented updated results for $BF(B_s \rightarrow \phi \mu \mu)$:

 This 3.6σ tension with SM further inflates tensions noted by some 'global' fitting groups

BF(B⁰ \rightarrow K^{*0}µµ) and the narrow width approximation

 \Rightarrow BRs are corrected by a factor $|\mathcal{W}_{K^*}|^2 \simeq 1.2$ (increasing anomalies)

- [On the experimental side...]
- Would need muon efficiency to be wrong (only) at low q^2
- Detector performance doesn't depend directly on q², depends on momenta, spatial position of tracks
 - Why only at low q^2 ?
 - Performance calibrated with data
 - Have plenty of decays with muons where we are not seeing any NP effects
 - How to triple check?

• Try to use observables where theoretical uncertainties cancel e.g. Forward-backward asymmetry A_{FB} of θ_I distn

 LHCb angular analysis of 2016 and Run I data [PRL 125 (2020) 011802]

Lнср гнср

 Vast majority of observables in agreement with SM predns, giving some confidence in theory control of form-factors

- P₅' shows significant discrepancy wrt SM prediction
- Good coherence between observables
- Tension with SM in angular analysis alone 3.3σ ... but theory treatment of intractable cc̄ contribution?

- Most recently angular analysis performed for analogous K*+ decay mode with K*+ \rightarrow K_S^0 π^+
- Lower statistics but message is identical in this decay tension with SM is 3.1σ [PRL 126 (2021) 0161802]

Control channel angular analysis

12

- [On the experimental side...]
- Angular anomaly looks very compatible with branching fraction anomaly but very different analysis
- Even at low q², majority of observables agree with SM prediction
- Control channel analysis gives confidence
- These are not angles in lab frame ... difficult to see how to build a connection to any detector effect
- IMO electron angular analysis could end the debate

Lepton Universality Ratios

Lepton Universality Ratios

- In the SM couplings of gauge bosons to leptons are independent of lepton flavour
- Branching fractions of processes with different leptons differ only by phase space and helicity-suppressed contributions
- Ratios of the form: $R_{K^{(*)}} := \frac{\mathcal{B}(B \to K^{(*)} \mu^+ \mu^-)}{\mathcal{B}(B \to K^{(*)} e^+ e^-)} \stackrel{\text{SM}}{\cong} 1$
 - free from QCD uncertainties affecting other observables $\rightarrow O(10^{-4})$ uncertainty [JHEP07 (2007) 040]
 - Up to O(1%) QED corrections [EPJC76 (2016) 8,440]

 \rightarrow Any significant deviation is a smoking gun for New Physics

– Possible RH contribution?

15

R_K Analysis Strategy [arXiv:2103.11769]

• Exploit double ratio wrt equivalent J/ψ decay modes in order to cancel experimental systematic uncertainties

$$R_{K} = \frac{\mathcal{B}(B^{+} \to K^{+}\mu^{+}\mu^{-})}{\mathcal{B}(B^{+} \to K^{+}J/\psi(\mu^{+}\mu^{-}))} / \frac{\mathcal{B}(B^{+} \to K^{+}e^{+}e^{-})}{\mathcal{B}(B^{+} \to K^{+}J/\psi(e^{+}e^{-}))}$$

$$= \frac{N_{\mu^{+}\mu^{-}}^{\text{rare}} \varepsilon_{\mu^{+}\mu^{-}}^{J/\psi}}{N_{\mu^{+}\mu^{-}}^{J/\psi} \varepsilon_{\mu^{+}\mu^{-}}^{\text{rare}}} \times \frac{N_{e^{+}e^{-}}^{J/\psi} \varepsilon_{e^{+}e^{-}}^{\text{rare}}}{N_{e^{+}e^{-}}^{\text{rare}} \varepsilon_{e^{+}e^{-}}^{J/\psi}}$$

$$B^{+} \to K^{+}J/\psi(1S)(\ell^{+}\ell^{-})$$

$$B^{+} \to K^{+}\psi(2S)(\ell^{+}\ell^{-})$$

$$B^{+} \to K^{+}\psi(2S)(\ell^{+}\ell^{-})$$

$$A^{+}e^{-} = S^{+}e^{-}$$

$$A^{+}e^{-$$

[arXiv:2103.11769]

• Test control of the absolute scale of the efficiencies by instead measuring the single ratio,

 $r_{J/\psi} = \frac{\mathcal{B}(B^+ \to K^+ J/\psi(\mu^+ \mu^-))}{\mathcal{B}(B^+ \to K^+ J/\psi(e^+ e^-))}$

where we do not benefit from the double ratio cancellation

- $r_{J/\psi}$ measured to be lepton universal at 0.4% level
- Measure $r_{J/\psi} = 0.981 \pm 0.020$ (stat+syst)
 - compatible with unity for new and previous datasets and in all trigger samples
 - result is independent of the decay kinematics
 - binning in quantities that would expect bremsstrahlung and trigger to depend on see completely uniform result

Ending the (expt'al) debate

The broader landscape

- A further anomaly is seen in LFU ratios in $b \rightarrow clv$ decays
 - Good theoretical control due to factorisation of hadronic and leptonic parts – again very clean
 - Tree-level processes in SM requires a *huge* NP effect, comparable with the SM amplitude
 - Drives idea of hierarchical effect: large NP effect in τ ; smaller in μ , where have measured **b** \rightarrow **s** $\mu\mu$ decays, and little/no effect in **e** modes
- Possible to make a NP explanation, coherent with $b \rightarrow s \mu \mu$
 - Most discussed NP models involve Leptoquarks or Z'
 - Difficult to connect b→clv anomaly and g-2 anomaly, but is possible to connect b→sll anomalies and g-2

Fit to $b \rightarrow cl_V LFU$ ratios

- Combination of LHCb results with those from Babar/Belle
- World average value shows a 3.1_o tension with SM prediction (recent updates to SM theory from lattice)

- R(D*) =
 0.286±0.019±0.025±0.021
 - 3^{rd} uncertainty from B(B⁰ \rightarrow D*- $\pi^+\pi^-\pi^+$, D*- $\mu^+\nu$)
 - **0.9** above SM prediction

Conclusions

Conclusions

- Interesting set of anomalies observed in b→sll and b→clv decays
- Would need some extraordinary effects to be able to escape data-driven calibrations and explain with 'experimental issues'
- Some of the theoretical issues still intractable no knockout blow on the SM… yet…