Dark Baryon solution to the Neutron Lifetime Puzzle

Benjamín Grinstein

with
Bart Fornal

Anomalies 2021
November 11

"Missing Neutrons May Lead a Secret Life as Dark Matter",
C. Moskowitz, Scientific American
(January 29, 2018)

Why this, in this conference?

- Effect at $>4 \sigma$
- Many independent experiments
- How is this different from $g-2$?
- Many independent experiments
- No trivial/obvious explanation
- Not theory driven

Neutron lifetime measurements

Neutron Lifetime Measurements

Source: https://www.scientificamerican.com, modified

$$
\tau_{n}^{\text {beam }}=888.0 \pm 2.0 \mathrm{~s}
$$

$$
\tau_{n}^{\text {bottle }}=879.6 \pm 0.6 \mathrm{~s}
$$

Discrepancy

$$
\frac{\Delta \tau_{n}}{\tau_{n}} \approx 1 \%
$$

Bottle experiments

Data points fit to an exponential decay

$$
N=N_{0} e^{-\lambda t}
$$

Lifetime

Beam experiments

Since neutron decays only via beta decay

Beam experiments

$$
n \rightarrow p+e^{-}+\bar{\nu}_{e}
$$

equality should hold:

$$
\tau_{n}^{\mathrm{beam}}=\tau_{n}^{\text {bottle }}
$$

Bottle experiments

but

$$
\tau_{n}^{\text {beam }}=888.0(2.1) \mathrm{s}>\tau_{n}^{\text {bottle }}=879.3(0.8) \mathrm{s}
$$

Neutron lifetime in the Standard Model

Theoretical prediction

$$
\tau_{n}=\frac{4908.6(1.9) \mathrm{s}}{\left|V_{u d}\right|^{2}\left(1+3 g_{A}^{2}\right)}
$$

$$
\mathcal{M}=\frac{1}{\sqrt{2}} G_{F} V_{u d} g_{V}\left[\bar{p} \gamma_{\mu} n-g_{A} \bar{p} \gamma_{5} \gamma_{\mu} n\right]\left[\bar{e} \gamma^{\mu}\left(1-\gamma_{5}\right) \nu\right]
$$

Using the PDG average for g_{A}

$$
880.5 \mathrm{~s}<\tau_{n}<886.0 \mathrm{~s}
$$

Lattice result

$$
870 \mathrm{~s}<\tau_{n}<900 \mathrm{~s}
$$

$$
g_{A}=1.271 \pm 0.013
$$

Chang et al.,
Nature 558, 91 (2018)

Neutron lifetime in the Standard Model

Theoretical prediction

$$
\tau_{n}=\frac{4908.6(1.9) \mathrm{s}}{\left|V_{u d}\right|^{2}\left(1+3 g_{A}^{2}\right)}
$$

Czarnecki, Marciano \& Sirlin, PRL 120, 202002 (2018)

PERKEO : β spectrum of polarized neutrons
aSPECT: $\beta-\bar{v}$ angular correlations

$$
\lambda=g_{A} / g_{V}
$$

- Stratowa 1978
- Byrne 2002
- Darius 2017
- our work 2019

4 Bopp 1986

- Yerozolimsky 1997
- Liaud 1997
* Abele 1997
- Mostovoi 2001
- Abele 2002
- Schumann 2008
- Liu 2010
a Mund 2013
- Mendenhall 2013
- Brown 2018
- Märkisch 2019
gives beam τ
aSPECT vs PERKEO 2.8O tension

Beck et al,
Phys.Rev.C 101 (2020) 5, 055506

Neutron lifetime discrepancy

Source: https://www.scientificamerican.com

Beam measures protons only! And only slope (decay rate).

$$
\frac{1}{N(n)} \frac{d N(p)}{d t}=-\lambda \operatorname{Br}(n \rightarrow p)
$$

$$
\tau_{n}^{\text {beam }}=\frac{\tau_{n}}{\operatorname{Br}(n \rightarrow p+\text { anything })}
$$

Neutron dark decay

PHYSICAL REVIEW LETTERS 120, 191801 (2018)

Dark Matter Interpretation of the Neutron Decay Anomaly

Bartosz Fornal and Benjamín Grinstein

Department of Physics, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
(0) (Received 19 January 2018; revised manuscript received 3 March 2018; published 9 May 2018)

$$
\operatorname{Br}(n \rightarrow p+\text { anything }) \approx 99 \%
$$

Remaining 1\% :

$$
n \rightarrow \text { SM particles (other than } p \text {) }
$$

$$
n \rightarrow \text { dark particle(s) }+ \text { SM particle(s) }
$$

$$
\tau_{n \rightarrow \text { dark }} \approx 1 \text { day }
$$

Hypothesis is model independent

This simple hypothesis can be tested

Ongoing beam and bottle experiments

Obvious test 1:
Measure lifetime by
exponential decay along
experimental axis.

Ongoing beam and bottle experiments

NIST Center for Neutron Research

Ongoing beam and bottle experiments

Nuclear physics bounds

p MEAN LIFE

A test of baryon conservation. See the " p Partial Mean Lives" section below for limits for identified final states. The limits here are to "anything" or are for "disappearance" modes of a bound proton (p) or (n). See also the 3ν modes in the "Partial Mean Lives" section. Table 1 of BACK 03 is a nice summary.

$\begin{aligned} & \text { LIMIT } \\ & \text { (years) } \\ & \hline \end{aligned}$	PARTICLE	CL\%	DOCUMEN		TECN	COMMENT
$>5.8 \times 10^{29}$	n	90	1 ARAKI	06	KLND	$n \rightarrow$ invis
$>2.1 \times 10^{29}$	p	90	2 AHMED	04	SNO	\rightarrow Invi

- - We do not use the following data for averages, fits, limits, etc.
$>1.9 \times 10^{29} \quad n \quad 90 \quad 2$ AHMED 04 SNO $n \rightarrow$ invisible

Nuclear physics bounds $-{ }^{9} \mathrm{Be}$

E

${ }^{9} \mathrm{Be} \rightarrow$ 2Adedfmbyiddebiofflen if:

Dark Matter scenario

Dark particle stability

requires

$$
m_{\chi}<m_{p}+m_{e}=938.783 \mathrm{MeV}
$$

The (possible) dark matter mass is in the range

$$
937.992 \mathrm{MeV}<m_{\chi}<938.783 \mathrm{MeV}
$$

New neutron decay channels

937.993 MeV $<M_{f}<939.565 \mathrm{MeV}$

Scenario I

Scenario II

Scenario III

Case (1): Neutron \longrightarrow dark particle + photon

Dark particle $937.900 \mathrm{MeV}<m_{\chi}<939.565 \mathrm{MeV}$ mass
Dark decay photon energy $\quad 0<E_{\gamma}<1.664 \mathrm{MeV}$
Dark matter case
$0.782 \mathrm{MeV}<E_{\gamma}<1.664 \mathrm{MeV}$

Case (1): Neutron \longrightarrow dark particle + photon

 Example: xny interaction from mixing
gives

In terms of mass eigenstates, neutron dark decay

Case (1): Quantitative description

Example of a theory with xn interaction

$$
\begin{aligned}
\mathcal{L}^{\mathrm{eff}} & =\bar{n}\left(i \not \partial-m_{n}+\frac{g_{n} e}{2 m_{n}} \sigma^{\mu \nu} F_{\mu \nu}\right) n \\
& +\bar{\chi}\left(i \not \partial-m_{\chi}\right) \chi+\varepsilon(\bar{n} \chi+\bar{\chi} n)
\end{aligned}
$$

In terms of mass eigenstates, neutron dark decay

$$
\mathcal{L}_{n \rightarrow \chi \gamma}^{\mathrm{eff}}=\frac{g_{n} e}{2 m_{n}} \frac{\varepsilon}{\left(m_{n}-m_{\chi}\right)} \bar{\chi} \sigma^{\mu \nu} F_{\mu \nu} n
$$

$$
\epsilon \approx 10^{-13} \mathrm{GeV}
$$

Microscopic

 Model 1 (minimal)
Lagrangian

$$
\mathcal{L}_{1}=\left(\lambda_{q} \epsilon^{i j k} \overline{u_{L i}^{c}} d_{R j} \Phi_{k}+\lambda_{\chi} \Phi^{* i} \bar{\chi} d_{R i}+\text { h.c. }\right)-M_{\Phi}^{2}|\Phi|^{2}-m_{\chi} \bar{\chi} \chi
$$

Dark decay rate

$$
\Delta \Gamma_{n \rightarrow \chi \gamma}=\frac{g_{n}^{2} e^{2}}{8 \pi}\left(1-\frac{m_{\chi}^{2}}{m_{n}^{2}}\right)^{3} \frac{m_{n} \varepsilon^{2}}{\left(m_{n}-m_{\chi}\right)^{2}}
$$

$$
\varepsilon=\frac{\beta \lambda_{q} \lambda_{\chi}}{M_{\Phi}^{2}}
$$

$$
\langle 0| \epsilon^{i j k} \overline{u_{L i}^{c}} d_{R j} d_{R k}|n\rangle=\beta P_{R} u_{n}
$$

To explain the neutron lifetime discrepancy

$$
\frac{\Delta \Gamma_{n \rightarrow \chi \gamma}}{\Gamma_{n}} \approx 1 \% \quad \longrightarrow \quad \frac{M_{\Phi}}{\sqrt{\left|\lambda_{q} \lambda_{\chi}\right|}} \approx 400 \mathrm{TeV}
$$

Neutron dark decay - experimental search

monochromatic photons

$$
0.782 \mathrm{MeV}<E_{\gamma}<1.664 \mathrm{MeV}
$$

Tang et al., Search for the neutron decay $n \rightarrow X+\gamma$ where X is a dark matter particle, PRL 121, 022505 (2018)
2.2σ exclusion

electron-positron pairs

$$
2 m_{e}+100 \mathrm{keV} \leq E_{e^{+} e^{-}}<1.665 \mathrm{MeV}
$$

Glapeetal. SCanstirfintsaon thattiondeldattef the free htetrontationthe
 222503 (2019) --ILL Grenoble

Case (2): Neutron \longrightarrow two dark particles

Constraints on masses

$$
937.900 \mathrm{MeV}<m_{\tilde{\chi}}
$$

$$
937.900 \mathrm{MeV}<m_{\chi}+m_{\phi}<939.565 \mathrm{MeV}
$$

Dark matter case

$$
\left|m_{\chi}-m_{\phi}\right|<938.783 \mathrm{MeV}
$$

Model 2

For $m_{\widetilde{X}}>m_{n}$

$$
\frac{\Delta \Gamma_{n \rightarrow \chi \phi}}{\Gamma_{n}} \approx 1 \%
$$

$\lambda_{\phi} \approx 0.04$

$$
\frac{M_{\Phi}}{\sqrt{\left|\lambda_{q} \lambda_{\chi}\right|}} \approx 1600 \mathrm{TeV}
$$

For $937.9 \mathrm{MeV}<m_{\widetilde{\chi}}<m_{n}$

$$
\frac{\Delta \Gamma_{n \rightarrow \tilde{\chi} \gamma}+\Delta \Gamma_{n \rightarrow \chi \phi}}{\Gamma_{n}} \approx 1 \%
$$

Active Field: Other topics

Unstable Nucleus Decay*

Mesogenesis (baryogenesis)
Hyperon Decays
Dark Matter
Neutron Stars
Complete Models
Hydrogen decay
Other solutions

Nuclear dark decays

Stable nuclei remain stable if

$$
m_{n}-1.572 \mathrm{MeV}<M_{f}<m_{n}
$$

i.e.,
$937.993 \mathrm{MeV}<M_{f}<939.565 \mathrm{MeV}$

Dark decays possible in unstable nuclei with $S(n)<1.572 \mathrm{MeV}$

${ }^{11}$ Be decay

An example of an unstable nucleus with $S(n)<1.572 \mathrm{MeV}$ is ${ }^{11} \mathrm{Be}$ with $S(n)_{\left({ }_{(11 \mathrm{Be})}\right.}=0.502 \mathrm{MeV}$ that could decay via

Pfutzner \& Riisager, PRC 97, 042501(R) (2018)

$$
{ }^{11} \mathrm{Be} \rightarrow{ }^{10} \mathrm{Be}+\tilde{\chi}^{*} \rightarrow{ }^{10} \mathrm{Be}+\chi+\phi
$$

11Be primer:

$$
\begin{gathered}
\operatorname{Br}\left({ }^{11} \mathrm{Be} \stackrel{\beta^{-}}{\longrightarrow}{ }^{11} \mathrm{~B}\right)=97.1 \% \\
\operatorname{Br}\left({ }^{11} \mathrm{Be} \xrightarrow{\beta^{-}, \alpha}{ }^{7} \mathrm{Li}+{ }^{4} \mathrm{He}\right)=2.9 \%
\end{gathered}
$$

Theoretical estimate for β-delayed proton emission:

$$
\mathrm{Br}\left({ }^{11} \mathrm{Be} \xrightarrow{\beta}{ }^{11} \mathrm{~B} \rightarrow{ }^{10} \mathrm{Be}+p\right) \approx 2 \times 10^{-8}
$$

Hint from ${ }^{11}$ Be decays?

Pfutzner \& Riisager, Examining the possibility to observe neutron dark decay in nuclei, PRC 97, 042501 (R) (2018)

${ }^{11} \mathrm{Be}$: one-neutron halo nucleus, can calculate!

Beta-delayed, proton emission $\quad{ }^{11} \mathrm{Be} \rightarrow{ }^{11} \mathrm{~B} e^{-} \rightarrow\left({ }^{10} \mathrm{Be} p\right) e^{-}$

experiment

$$
\operatorname{Br}\left({ }^{11} \mathrm{Be} \rightarrow{ }^{10} \mathrm{Be}+?\right) \approx 8 \times 10^{-6}
$$

$400 \times$ halo nucleus prediction

Riisager et al., ${ }^{11} \mathrm{Be}(\beta \mathrm{\beta})$, a quasi-free neutron decay?, PLB 732, 305 (2014)

$?$ Resonance or dark decay
 ?

$S_{n}\left({ }^{11} \mathrm{Be}\right)=0.5 \mathrm{MeV}$

11Be decay experiments

Are there protons in the final state of ${ }^{11} \mathrm{Be}$ decays?
This would test ALL neutron dark decay channels with:

$$
937.993 \mathrm{MeV}<M_{f}<(939.565-0.501) \mathrm{MeV}
$$

$$
\nabla
$$

$$
937.993 \mathrm{MeV}<M_{f}<939.064 \mathrm{MeV}
$$

Results inconclusive - stay tuned!

It would be truly amazing if the good old neutron turned out to be the particle enabling us to probe the dark matter sector of the universe

Thank you!

11Be decay experiments

CERN - ISOLDE

 TRIUMF \& MSU

Not the last word:

$\operatorname{Br}\left({ }^{11} \mathrm{Be} \rightarrow{ }^{10} \mathrm{Be}+X\right)<2 \times 10^{-6}$
Evidence of proton resonance:
$E_{x}=11.425(20) \mathrm{MeV}, \Gamma=12(5) \mathrm{keV}$ Search for Aremthereoprotonsinsthe final state of 11 Be decays? Riisager et al Eur.Phys.J.A 56 (2020) 3, 100
 Possible α-particle contamination?.

Clarification of large-strengt $937.993 \mathrm{MeV}<M_{f}<939.064 \mathrm{MeV}$ decay of ${ }^{11} \mathrm{Be}$, J.Refsgaard et al, Phys.Rev.C 99 (2019) 4, 044316
${ }^{11} \mathrm{Be}: ~ Y . ~ A y y a d ~ e t ~ a l, ~ P R L ~ 123 ~(2019) ~ 082501 ~$

Table 11.1: Energy levels of ${ }^{11} \mathrm{~B}$

$\begin{gathered} E_{\mathrm{x}} \\ (\mathrm{Mev} \pm \mathrm{keV}) \end{gathered}$	J^{π}	$\begin{gathered} \tau_{\mathrm{m}}(\mathrm{sec}) \text { or } \\ \Gamma(\mathrm{keV}) \end{gathered}$	Decay
0	$\frac{3}{2}$	stable	-
2.127 ± 6	$\frac{1}{2}^{-}$	$\tau_{\mathrm{m}}=(4.6 \pm 0.6) \times 10^{-15}$	γ
4.459 ± 8	$\left(\frac{5}{2}^{-}\right)$	$\tau_{\mathrm{m}}=(1.17 \pm 0.17) \times 10^{-15}$	γ
5.035 ± 8	$\left(\frac{3}{2}^{-}\right)$	<13	γ
6.758 ± 7	$\left(\frac{7^{-}}{}{ }^{-}\right.$)	<13	γ
6.808 ± 7	$\left(\frac{3}{2}\right)^{-}$	<13	γ
7.298 ± 6	$\left(\frac{5}{2}^{-}\right)$	<13	γ
7.987 ± 9		<8	γ
8.568 ± 5	$\left(\frac{1}{2}^{+}, \frac{3}{2}^{+}\right)$	< 8	γ
8.927 ± 5	$\left(\frac{5}{2}^{+}\right)$	<0.7	γ, α
9.191 ± 5	$\left(\frac{7}{2}^{+}\right)$	<0.1	γ, α
9.276 ± 5	$\left(\frac{5}{2}^{+}\right)$	5	γ, α
9.88 ± 20	$\left(\leq \frac{5}{2}\right)$	160	α
10.26	$\left(\leq \frac{7}{2}\right)$	220	α
10.32 ± 20		45 ± 14	
10.62		100	α
11.0		670	α
>11.46		70	$\alpha,(\mathrm{n})$
11.68 ± 100	$\left(\frac{5}{2}^{+}, \frac{7}{2}^{+}\right)$	140	α, n
11.95 ± 80	$\left(\frac{3}{2}^{-}, \frac{5}{2}^{+}\right)$	320	α, n
13.16		450	α, n
14.0		300	α, n

New narrow, near-threshold resonance in ${ }^{11} \mathrm{~B}$ suggested also by a numerical calculation (a posteriori)

Convenient Location of a NearThreshold Proton-Emitting
Resonance in ${ }^{11}$ B, J. Okołowicz, et al, PRL 124 (2020) 4, 042502

Mesogenesis

Zhakarov conditions:

- If d quark couples to diquark, so may s and b quarks.
- New neutral scalar decays late, out of equilibrium, into $B \bar{B}$ pairs
- Before decaying, $B \bar{B}$ oscillations
- B mesons CP violating decay into baryon plus dark

1. BNV: dark decay (not really BNV because DM carries baryon-number)
2. Out of equilibrium: late decay
3. CPV: provided by SM!!

Hyperon Dark Decays

- As for mesogenesis if d quark couples to diquark, so may s and b quarks.
- Probe this with hyperon decays (BES factory)
- Calculable! (using SU(3) flavor symmetry, ChPT)
- Various modes:

Assume:

$$
\begin{aligned}
\mathcal{L}_{\text {eff }} & =C_{a b, \mathcal{O} \mathcal{O}_{a b, c}+C_{a b, c}^{\prime} \mathcal{O}_{a b, c}^{\prime}}, \\
\mathcal{O}_{a b, c} & =\epsilon_{i j k}\left(u_{R a}^{i} d_{R b}^{j}\right)\left(\chi_{R} d_{R c}^{k}\right),
\end{aligned}
$$

and

$$
\mathcal{L} \supset y_{\xi \phi} \bar{\chi} \xi \phi+\text { h.c. },
$$

Hyperon Dark Decays

LHC signatures

Φ can be singly produced through $u d \Rightarrow \Phi$ or pair produced via gluon fusion $g \boldsymbol{g} \boldsymbol{\rightarrow} \Phi \Phi$

Collider signatures involve:
$\longrightarrow 2$ jets, monojet + MET
$\longrightarrow \quad 2$ jets + MET, 3 jets + MET, 4 jets

+ absence of signal

Dark matter

Model 1: non-thermal DM production
(Allahverdi, Dev, Dutta, PLB 02, 019 (2018))

Model 2: (a) DM non-thermally produced
(b) DM thermally produced

DM annihilation

$$
\lambda_{\phi} \approx 0.04
$$

Neutron star constraints

- McKeen, Nelson, Reddy \& Zhou, arXiv:1802.08244 [hep-ph]
- Baym, Beck, Geltenbort \& Shelton, arXiv:1802.08282 [hep-ph]
- Motta, Guichon \& Thomas, J. Phys. G 45 05LT01 (2018), arXiv:1802.08427 [nucl-th]

Neutron dark decay channel and no DM self-interactions imply neutron star masses < $0.8 \mathrm{M}_{\circ}$

Dark matter repulsive self-interactions can block dark decays and allow the observed neutron star masses DM-neutron cross repulsive interactions, energy cost for converting neutrons to DM

Dark decay models with SIDM

Complete models:

$$
n \rightarrow \chi A^{\prime} \quad \text { or }
$$

$$
n \rightarrow \chi \phi
$$

Cline \& Cornell, Dark decay of the neutron, JHEP 07 (2018) 081
Karananas \& Kassiteridis, Small-scale structure from neutron dark decay, JCAP 09 (2018) 036

Hydrogen decay

McKeen, Pospelov, e-Print: 2003.02270 McKeen et al, PRL125 (2020) 231803, 2006.15140 Fornal et al, PLB 811 (2020) 135869

- Electron capture in H
- Probes sensitively same region as DM hypothesis:

$$
m_{\chi}<m_{p}+m_{e}=938.783 \mathrm{MeV}
$$

Light brown region excluded using Borexino data reinterpreted as

$$
H \rightarrow \gamma+\text { nothing }
$$

Other solutions to the neutron lifetime puzzle

Ivanov, Hollwieser, Troitskaya, Wellenzohn, Berdnikov, arXiv:1806.10107
Neutrino mode

$\chi e^{+} e^{-}$is phase space suppressed relative to $\chi v v$

Search for $e^{-} n \rightarrow e^{-} \chi$

Other solutions to the neutron lifetime puzzle

Considering only the 2002+ measurements of g_{A} the bottle neutron lifetime is favored; there is no puzzle, beam is wrong Czarnecki, Marciano \& Sirlin, PRL 120, 202002 (2018)

Neutron-mirror neutron oscillations enhanced in large magnetic fields

$$
\text { Z.Berezhiani, Eur.Phys.J.C } 79 \text { (2019) 6, } 484
$$

Neutron - mirror-neutron rapid oscillations

$$
\text { W.Tan, Phys.Lett.B } 797 \text { (2019) } 134921
$$

Back-up slide: Neutron star constraints (arXiv:1802.08244, 1802.08282, 1802.08427)

Neutron dark decay channel affects the equation of state for neutron stars

Total energy density

$$
\epsilon=\epsilon_{b}\left(n_{b}\right)+m_{\chi} n_{b} y^{3}+\frac{k_{b}^{5}}{10 \pi^{2} m_{\chi}} y^{5}
$$

Total pressure

$$
P=P_{b}\left(n_{b}\right)+\frac{k_{b}^{5}}{15 \pi^{2} m_{\chi}} y^{5}
$$

(arXiv:1802.08282)

$$
k_{\chi}=y k_{b}
$$

DM-neutron cross repulsive interactions, energy cost for converting neutrons to DM

BG, Kouvaris, Nielsen, Phys.Rev.Lett. 123 (2019) 9, 091601 [1811.06546]
Assume potential from exchange of $\phi: \quad U=-\frac{g_{n} g_{\chi}}{4 \pi r} \exp \left(-m_{\phi} r\right)$
Equation of state:

$$
\varepsilon\left(n_{n}, n_{\chi}\right)=\varepsilon_{\mathrm{nuc}}\left(n_{n}\right)+\varepsilon_{\chi}\left(n_{\chi}\right)+\frac{n_{\chi} n_{n}}{\left(z=m_{\phi} / \sqrt{\left|g_{\chi} g_{n}\right|}\right)}
$$

Fixed total number density: $\quad n_{\mathrm{F}}=n_{n}+n_{\chi}$
Free energy cost @ T=0 to create a DM particle:

$$
\Delta E \equiv \frac{\partial \varepsilon\left(n_{\mathrm{F}}-n_{\chi}, n_{\chi}\right)}{\partial n_{\chi}}=\mu_{\chi}\left(n_{\chi}\right)-\mu_{\mathrm{nuc}}\left(n_{n}\right)+\frac{n_{\mathrm{F}}-2 n_{\chi}}{z^{2}}
$$

Pure n environment:

$$
\Delta E_{0}=\left.\Delta E\right|_{n_{\chi}=0}=m_{\chi}-\mu_{\mathrm{nuc}}\left(n_{\mathrm{F}}\right)+\frac{n_{\mathrm{F}}}{z^{2}}
$$

