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Part I: Introduction
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No proton decay nor cLFV

 :ℒSM
4

 sans Yukawa:ℒSM
4 U(3)q × U(3)U × U(3)D × U(3)l × U(3)E

U(1)B × U(1)e × U(1)μ × U(1)τ

 Accidental symmetriesℒ4 :

•  truncation at the   Exact accidental symmetries

• Peculiar observed values of   Approximate accidental symmetries  
      

Λ−1
NP [ℒSMEFT] ≤ 4 ⟹

Yu,d,e ⟹

Experiment: τp ≳ 1034 years, BR(μ → eγ) ≲ 10−13, . . .
Prediction:

−ℒYuk = q̄V† ̂YuH̃U + q̄ ̂YdHD + l̄ ̂YeHE
[  transformation and a singular value decomposition theorem]U(3)5
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[Mass hierarchy & CKM alignment] [Quark flavour, CP, etc]



 Constraintsℒ6 :

Proton decay

ℒSMEFT
6 ⊃

1
Λ2

qqqℓ

Λ > 1012 TeV

Physics Briefing Book, 1910.11775
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Fig. 5.1: Reach in new physics scale of present and future facilities, from generic dimension
six operators. Colour coding of observables is: green for mesons, blue for leptons, yellow for
EDMs, red for Higgs flavoured couplings and purple for the top quark. The grey columns illus-
trate the reach of direct flavour-blind searches and EW precision measurements. The operator
coefficients are taken to be either ⇠ 1 (plain coloured columns) or suppressed by MFV factors
(hatch filled surfaces). Light (dark) colours correspond to present data (mid-term prospects,
including HL-LHC, Belle II, MEG II, Mu3e, Mu2e, COMET, ACME, PIK and SNS).

compared with the reach of direct high-energy searches and EW precision tests (in grey), il-
lustrated by using flavour-blind operators that have the optimal reach [258]: the gluon-Higgs
operator and the oblique parameters for EW precision tests, respectively. The shown effective
energy reach of flavour experiments do have several caveats. First of all, in many realistic the-
ories either the coupling constants are smaller than unity and/or the symmetries suppress the
sizes of the coefficients. This effect is illustrated by including in the quark sector the present
bounds in tree level NP with Minimal Flavour Violation (MFV) pattern of couplings (hatch filled
areas) [259–262]. Furthermore, there could be cancellations among several higher-dimension
operators. In addition, for theories in which the new physics contributes as an insertion inside a
one-loop diagram mediated by SM particles, all the shown scales should be further reduced by
extra GIM-mass suppressions and/or a factor a/4p ⇠ 10�3 (where a denotes the generic gauge
structure constants).

Finally and importantly, the new physics scale behind the flavour paradigm may differ
from the electroweak new physics scale. Despite these caveats, Fig. 5.1 does illustrate the
unique power of flavour physics to probe NP. The next generation of precision particle physics
experiments will probe significantly higher effective NP scales, as discussed in more detail
below.

ΔF = 2 EDMs

4

cLFV
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• Accidental symmetries (exact and approximate) are broken by the irrelevant couplings.
• Testing accidental symmetries is an opportunity  

 Efficient probe of high-energy dynamics.
• A viable BSM at the TeV-scale should have accidental symmetries similar to the SM.

⟹

MFV



Part II: Flavour anomalies
This talk:  and b → sℓℓ (g − 2)μ
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LHCb, CERN, 2103.11769

3.1 σ

+ other  observablesb → s μμ

Footprints of a next layer?

= 4.3 σ conservative global significance
[Isidori, Lancierini, Owen, Serra, 2104.05631]

A word of caution:  
More EXP/TH work is needed to prove NP is behind these effects.
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AS

CFFPSV

HMMN

SM

�t to LFU observables + Bs ! µµ

B. Capdevila, M. Fedele, S. Neshatpour, P. Stangl Flavour Anomaly Workshop, �� Oct. ���� �6/�8

b ! s`` in the weak effective theory
I Effective Hamiltonian at scale mb: Heff = Heff, sl +Heff, had

I Semileptonic operators: (N = �GFp
� VtbV⇤

ts
e�

�6⇡� ⇡ (�� TeV)��)

Heff, sl = �N
✓
C�O� + C0

�O0
� +

X

`

X

i=�,��,P,S

⇣
C`

i O`
i + C0`

i O0`
i

⌘◆
+ h.c.

O(0)
� =

mb

e (s̄�µ⌫PR(L)b) Fµ⌫ , O(0)`
� = (s̄�µPL(R)b)(¯̀�µ`) , O(0)`

�� = (s̄�µPL(R)b)(¯̀�µ��`) .

CSM
� ' ��.� , CSM

� ' � , CSM
�� ' �� .

Not considered here: (pseudo)scalar OP,S vanish in SM, could appear at dim. 6 in SMEFT (and tensor OT only at dim. 8 in SMEFT)

I Hadronic operators:

Heff, had = �N �6⇡�

e�

✓
C8O8 + C0

8O0
8 +

X

i=�,...,6

CiOi

◆
+ h.c.

e.g. O� = (s̄�µPLTac)(c̄�µPLTab) , O� = (s̄�µPLc)(c̄�µPLb) .

B. Capdevila, M. Fedele, S. Neshatpour, P. Stangl Flavour Anomaly Workshop, �� Oct. ���� �/�8

V-A

V-A

.  
SM
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• IF  anomalies are genuine new physics effect  
 Major Revolution in HEP

b → sℓ+ℓ−

⟹

ℒ ⊃
1

(40 TeV)2
(s̄LγμbL) (μ̄LγμμL)

E

E

E

E

4-fermion 
scattering at 
E ≫ vEW

𝒜 ∼
E2

(40 TeV)2
 Violation of perturbative 

unitary 
⟹

≲ 100 TeV

• Observational evidence! 
(Argument stronger than EW naturalness)

Di Luzio, Nardecchia;  
1706.01868
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• The scale indicated from the perturbative unitary tends to be overly pessimistic
Weak interactions : GF ⟹ Λ ≲ 1 TeV , mW ≈ 80 GeV

New mass scale?
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Fig. 5.1: Reach in new physics scale of present and future facilities, from generic dimension
six operators. Colour coding of observables is: green for mesons, blue for leptons, yellow for
EDMs, red for Higgs flavoured couplings and purple for the top quark. The grey columns illus-
trate the reach of direct flavour-blind searches and EW precision measurements. The operator
coefficients are taken to be either ⇠ 1 (plain coloured columns) or suppressed by MFV factors
(hatch filled surfaces). Light (dark) colours correspond to present data (mid-term prospects,
including HL-LHC, Belle II, MEG II, Mu3e, Mu2e, COMET, ACME, PIK and SNS).

compared with the reach of direct high-energy searches and EW precision tests (in grey), il-
lustrated by using flavour-blind operators that have the optimal reach [258]: the gluon-Higgs
operator and the oblique parameters for EW precision tests, respectively. The shown effective
energy reach of flavour experiments do have several caveats. First of all, in many realistic the-
ories either the coupling constants are smaller than unity and/or the symmetries suppress the
sizes of the coefficients. This effect is illustrated by including in the quark sector the present
bounds in tree level NP with Minimal Flavour Violation (MFV) pattern of couplings (hatch filled
areas) [259–262]. Furthermore, there could be cancellations among several higher-dimension
operators. In addition, for theories in which the new physics contributes as an insertion inside a
one-loop diagram mediated by SM particles, all the shown scales should be further reduced by
extra GIM-mass suppressions and/or a factor a/4p ⇠ 10�3 (where a denotes the generic gauge
structure constants).

Finally and importantly, the new physics scale behind the flavour paradigm may differ
from the electroweak new physics scale. Despite these caveats, Fig. 5.1 does illustrate the
unique power of flavour physics to probe NP. The next generation of precision particle physics
experiments will probe significantly higher effective NP scales, as discussed in more detail
below.

Physics Briefing Book, 1910.11775

b → sℓ+ℓ−

3q → 2q

|Vcb | ≈ 0.04

• A consistent theory should have a well-defined flavour symmetry and a symmetry 
breaking pattern (e.g. MFV, U(2), partial compositeness, etc). 

• Thus,  transition should carry a corresponding flavour spurion suppression.3q → 2q

⟹
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ℒ6 ⊃
Vcb

(8 TeV)2
(s̄LγμbL) (μ̄LγμμL)
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New mass scale?
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Mediators

=

1 Use Typeset/TeX and DVI
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b b̄

τ
−

τ
+

Z′�
LQ

or + other loop models

See for example: 
Arcadi, Calibbi, Fedele, Mescia, 2104.03228

ℒ ⊃
1

16π2

|Vcb |
(0.6 TeV)2

(s̄LγμbL) (μ̄LγμμL)

9

or

Admir Greljo | Theoretical Interpretation of Flavour Anomalies



10

S3 = (3̄, 3,1/3)

ℒ ⊃ ηij Qi
LLj

LS3 • V-A structure  
Hiller, Schmaltz, 1408.1627, 
Dorsner, Fajfer, AG, Kamenik, Kosnik; 1603.04993, 
Buttazzo, AG, Isidori, Marzocca; 1706.07808, 
Gherardi, Marzocca, Venturini; 2008.09548 
+ many more

⟹
ηbμηsμ

M2
LQ

∼
Vcb

(8 TeV)2
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B. Capdevila, M. Fedele, S. Neshatpour, P. Stangl Flavour Anomaly Workshop, �� Oct. ���� �6/�8

Direct LHC searches  
LQ pair production:

 mLQ ≳ 1.5 TeV

b
μ

μ
b

Scalar leptoquark example

Admir Greljo | Theoretical Interpretation of Flavour Anomalies

• Tree-level , while  and  loop-suppressedJq × Jℓ Jq × Jq Jℓ × Jℓ

V-A
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So why do people object abog.at
TeV seat Leptoquarks

L4t y list QiQi St
13151 13 BCS 2

3

a Abrupt violation of the SM
accidental symmetries

Proton decay II y
probesseatesuptoto Tell

µ e f it j probesseatesupto105Tell

Electron EDM Amy probesseatesuptotoTell

LFUV, …U(3)L × U(3)E

CP

U(1)e × U(1)μ × U(1)τ

U(1)B

R(K ) probes up to 102 TeV

Admir Greljo | Theoretical Interpretation of Flavour Anomalies

Leptoquarks
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The Muon g-2, Fermilab, 2104.03281

Muon (g − 2)

*BMW lattice only  [2002.12347]1.6σ

ℒ6 ⊃
yμ

(0.2 TeV)2

evEW

16π2
μ̄LσμνμR Fμν

A word of caution:  
More EXP/TH work is needed to prove NP is behind these effects.

• New Physics examples

 

SUB e SURI UHH UMB3hm
Q 3 2 46 113

I 2 42 0 3,0
Ur 3 I 213 113

dr 3 l Yz 113

Vr 1 I 0 0 3,0
er I I I 0 3,0
H 1 2 42 0

OI I 1 O 3

Sz I 3 113 813

X
im

n f M

ℒ6 ⊃
yt

(10 TeV)2

evEW

16π2
μ̄LσμνμR Fμν

Z′�

 

b SMM LHCb CERN

otterQQ
b M

S
S µ

G 2ii Muong2Fermilab
XH's

ge LIGvHµrB
16Th Teh

g I
i

µ µ

Y.NO 0
HMn0lTeV1

LQ

*combined
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ℓi
L ℓj

R

γ

Br(μ → eγ)
3 × 10−13

≈ (
Δaμ

3 × 10−9 )
2

( θ12

10−5 )
2

Br(τ → μγ)
4 × 10−8

≈ (
Δaμ

3 × 10−9 )
2

( θ23

10−2 )
2

Naive BSM expectation is wrong! 
θ12 ∼ me /mμ ∼ 𝒪(10−1)

θ23 ∼ mμ/mτ ∼ 𝒪(10−1)

Nearly exact U(1)e × U(1)μ × U(1)τ?

cLFUV but no cLFV

Admir Greljo | Theoretical Interpretation of Flavour Anomalies



Part III: Muonic forces

AG, Soreq, Stangl, Thomsen, Zupan; 2107.07518

AG, Stangl, Thomsen; 2103.13991



• Extend the SM gauge group with the lepton flavour non-universal . 
 
 
 

• Natural framework for cLFUV without cLFV.
•  gauge boson is a potential mediator behind flavour anomalies.

U(1)X

U(1)X

Gauged lepton flavor

e μ τGauged U(1)X

15

Altmannshofer, Gori, Pospelov, Yavin; 1403.1269, 
Crivellin, D’Ambrosio, Heeck; 1501.00993,  
Celis, Fuentes-Martin, Jung, Serodio; 1505.03079, 
Crivellin, Fuentes-Martin, AG, Isidori; 1611.02703,  
Alonso, Cox, Han,  Yanagida; 1705.03858,  
Bonilla, Modak, Srivastava, Valle; 1705.00915,  
Ellis, Fairbairn,Tunney; 1705.03447; 
Allanach, Davighi;1809.01158,  
Altmannshofer, Davighi, Nardecchia; 1909.02021,  
Allanach; 2009.02197,  
+ many more …
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• Extend the SM gauge group with the lepton flavour non-universal . 
 
 
 

• Natural framework for cLFUV without cLFV.
•  gauge boson is a potential mediator behind flavour anomalies.

U(1)X

U(1)X

Gauged lepton flavor

e μ τGauged U(1)X

• Another potential mediator

• Charge a leptoquark under .U(1)X

qμS

qeS, qτS, qqS†

qqS†H, qqS†ϕ
16

• Gauge 
symmetry 
selection 
rules:

Davighi, Kirk, Nardecchia, 2007.15016
AG, Stangl, Thomsen, 2103.13991

Hambye, Heeck; 1712.04871

AG, Soreq, Stangl, Thomsen, Zupan; 2107.07518
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• Another potential mediator

• Charge a leptoquark under .U(1)X

• Extend the SM gauge group with the lepton flavour non-universal . 
 
 
 

• Natural framework for cLFUV without cLFV.
•  gauge boson is a potential mediator behind flavour anomalies.

U(1)X

U(1)X

Gauged lepton flavor

e μ τGauged U(1)X

qeS, qτS, qqS†

qqS†H, qqS†ϕ

The accidental symmetry of  is 
 and 

the LQ charge is 

ℒ4
U(1)B × U(1)e × U(1)μ × U(1)τ

( −1/3, 0, −1, 0 )

17
“Muoquark”

⟹

• Gauge 
symmetry 
selection 
rules:

qμS

Admir Greljo | Theoretical Interpretation of Flavour Anomalies

Davighi, Kirk, Nardecchia, 2007.15016
AG, Stangl, Thomsen, 2103.13991

Hambye, Heeck; 1712.04871

AG, Soreq, Stangl, Thomsen, Zupan; 2107.07518
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AG, Soreq, Stangl, Thomsen, Zupan; 2107.07518

• I

and the generators of U(1)X embeddings in SU(5) (Appendix C).

2 Model classification

We start by classifying the anomaly free models that, in addition to the SM, contain a
new gauge group U(1)X and a muoquark, that is, a leptoquark that only couples to muon
flavored fermions (muons and muon neutrinos). We assume that all the couplings allowed
by the gauge symmetry are nonzero. As such the fact that muoquark only couples to muons
is imposed by the choice of charge assignments under U(1)X , Eq. (2.12). Similarly, the
charge assignments, Eq. (2.13), forbid the proton decay, while quark Yukawas are allowed,
Eq. (2.11). In the rest of the section we discuss these requirements in detail.

2.1 General gauged flavor U(1)X

Throughout the manuscript we assume that the SM is extended by three right-handed
neutrinos. The chiral fermions of the theory thus carry the following charges under the
SU(3)C ⇥ SU(2)L ⇥ U(1)Y ⇥ U(1)X gauge group,

Qi ⇠ (3,2,
1
6 , XQi), Ui ⇠ (3,1,

2
3 , XUi), Di ⇠ (3,1, �

1
3 , XDi),

Li ⇠ (1,2, �
1
2 , XLi), Ei ⇠ (1,1, �1, XEi), Ni ⇠ (1,1, 0, XNi),

(2.1)

with i = 1, 2, 3 the flavor index. The SU(2)L doublets (singlets) are left (right) Weyl spinors
under Lorentz symmetry.

A consistent ultraviolet (UV) gauge theory has to be free of chiral anomalies. In this
work we require that the U(1)X charge assignments for the field content in Eq. (2.1) are
already anomaly free.1 This results in six conditions corresponding to the cancellation of
(mixed) triangle anomalies between U(1)X , SM gauge groups, and gravity [80],

SU(3)
2
C ⇥ U(1)X :

3X

i=1

(2XQi � XUi � XDi) = 0 , (2.2)

SU(2)
2
L ⇥ U(1)X :

3X

i=1

(3XQi + XLi) = 0 , (2.3)

U(1)
2
Y ⇥ U(1)X :

3X

i=1

(XQi + 3XLi � 8XUi � 2XDi � 6XEi) = 0 , (2.4)

Gravity2
⇥ U(1)X :

3X

i=1

(6XQi + 2XLi � 3XUi � 3XDi � XEi � XNi) = 0 , (2.5)

U(1)Y ⇥ U(1)
2
X :

3X

i=1

(X
2
Qi

� X
2
Li

� 2X
2
Ui

+ X
2
Di

+ X
2
Ei

) = 0 , (2.6)

1Our construction could be viewed as a low-energy effective theory in which anomalies could alternatively
be canceled by a higher-dimension Wess-Zumino-Witten operator [78]. The WZW operator is generated
by integrating out heavy chiral fermions in the UV. In general, it is not always clear how to make these
fermions heavy enough to satisfy the self-consistency of the effective theory assumptions. For an example
see, e.g., Ref. [79].

– 4 –

and the generators of U(1)X embeddings in SU(5) (Appendix C).
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1
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2
3 , XUi), Di ⇠ (3,1, �

1
3 , XDi),

Li ⇠ (1,2, �
1
2 , XLi), Ei ⇠ (1,1, �1, XEi), Ni ⇠ (1,1, 0, XNi),

(2.1)

with i = 1, 2, 3 the flavor index. The SU(2)L doublets (singlets) are left (right) Weyl spinors
under Lorentz symmetry.

A consistent ultraviolet (UV) gauge theory has to be free of chiral anomalies. In this
work we require that the U(1)X charge assignments for the field content in Eq. (2.1) are
already anomaly free.1 This results in six conditions corresponding to the cancellation of
(mixed) triangle anomalies between U(1)X , SM gauge groups, and gravity [80],

SU(3)
2
C ⇥ U(1)X :

3X

i=1

(2XQi � XUi � XDi) = 0 , (2.2)

SU(2)
2
L ⇥ U(1)X :

3X

i=1

(3XQi + XLi) = 0 , (2.3)

U(1)
2
Y ⇥ U(1)X :

3X

i=1

(XQi + 3XLi � 8XUi � 2XDi � 6XEi) = 0 , (2.4)

Gravity2
⇥ U(1)X :

3X

i=1

(6XQi + 2XLi � 3XUi � 3XDi � XEi � XNi) = 0 , (2.5)

U(1)Y ⇥ U(1)
2
X :

3X

i=1

(X
2
Qi

� X
2
Li

� 2X
2
Ui

+ X
2
Di

+ X
2
Ei

) = 0 , (2.6)

1Our construction could be viewed as a low-energy effective theory in which anomalies could alternatively
be canceled by a higher-dimension Wess-Zumino-Witten operator [78]. The WZW operator is generated
by integrating out heavy chiral fermions in the UV. In general, it is not always clear how to make these
fermions heavy enough to satisfy the self-consistency of the effective theory assumptions. For an example
see, e.g., Ref. [79].
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• Six anomaly cancelation conditions:

and the generators of U(1)X embeddings in SU(5) (Appendix C).

2 Model classification

We start by classifying the anomaly free models that, in addition to the SM, contain a
new gauge group U(1)X and a muoquark, that is, a leptoquark that only couples to muon
flavored fermions (muons and muon neutrinos). We assume that all the couplings allowed
by the gauge symmetry are nonzero. As such the fact that muoquark only couples to muons
is imposed by the choice of charge assignments under U(1)X , Eq. (2.12). Similarly, the
charge assignments, Eq. (2.13), forbid the proton decay, while quark Yukawas are allowed,
Eq. (2.11). In the rest of the section we discuss these requirements in detail.

2.1 General gauged flavor U(1)X

Throughout the manuscript we assume that the SM is extended by three right-handed
neutrinos. The chiral fermions of the theory thus carry the following charges under the
SU(3)C ⇥ SU(2)L ⇥ U(1)Y ⇥ U(1)X gauge group,

Qi ⇠ (3,2,
1
6 , XQi), Ui ⇠ (3,1,

2
3 , XUi), Di ⇠ (3,1, �

1
3 , XDi),

Li ⇠ (1,2, �
1
2 , XLi), Ei ⇠ (1,1, �1, XEi), Ni ⇠ (1,1, 0, XNi),

(2.1)

with i = 1, 2, 3 the flavor index. The SU(2)L doublets (singlets) are left (right) Weyl spinors
under Lorentz symmetry.

A consistent ultraviolet (UV) gauge theory has to be free of chiral anomalies. In this
work we require that the U(1)X charge assignments for the field content in Eq. (2.1) are
already anomaly free.1 This results in six conditions corresponding to the cancellation of
(mixed) triangle anomalies between U(1)X , SM gauge groups, and gravity [80],

SU(3)
2
C ⇥ U(1)X :

3X

i=1

(2XQi � XUi � XDi) = 0 , (2.2)

SU(2)
2
L ⇥ U(1)X :

3X

i=1

(3XQi + XLi) = 0 , (2.3)

U(1)
2
Y ⇥ U(1)X :

3X

i=1

(XQi + 3XLi � 8XUi � 2XDi � 6XEi) = 0 , (2.4)

Gravity2
⇥ U(1)X :

3X

i=1

(6XQi + 2XLi � 3XUi � 3XDi � XEi � XNi) = 0 , (2.5)

U(1)Y ⇥ U(1)
2
X :

3X

i=1

(X
2
Qi

� X
2
Li

� 2X
2
Ui

+ X
2
Di

+ X
2
Ei

) = 0 , (2.6)

1Our construction could be viewed as a low-energy effective theory in which anomalies could alternatively
be canceled by a higher-dimension Wess-Zumino-Witten operator [78]. The WZW operator is generated
by integrating out heavy chiral fermions in the UV. In general, it is not always clear how to make these
fermions heavy enough to satisfy the self-consistency of the effective theory assumptions. For an example
see, e.g., Ref. [79].
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(6X
3
Qi

+ 2X
3
Li

� 3X
3
Ui

� 3X
3
Di

� X
3
Ei

� X
3
Ni

) = 0 . (2.7)

We consider only rational solutions motivated by the unification scenario, i.e., embedding the
U(1)X into a simple Lie group at high-energies. We can work with integer charges without
loss of generality, since for any set of rational charges {pFi/qFi}, there is an equivalent
set of integer charges obtained by rescaling the gauge coupling gX with the least common
denominator. Any set of integer charges {XFi} satisfying the anomaly conditions (2.2)–(2.7)
can be used to generate up to (3!)

6 inequivalent solutions (and a correspondingly smaller set,
if some of the charges for different families coincide), by permuting the flavor specific charges
within each species. Below, we list the solutions to the Diophantine equations (2.2)–(2.7)
up to this freedom of family permutations.

Still, this leaves us with infinitely many integer solutions of the anomaly cancellation
conditions. For concreteness, we limit the maximal ratio of the largest and the smallest
nonzero charge magnitudes to be  10.2 In the following we then give an exhaustive set of
inequivalent integer solutions of Eqs. (2.2)–(2.7) with

� 10  XFi  10 for every Fi in Eq. (2.1), (2.8)

building on the work of Ref. [80], while imposing further constraints to produce viable
muoquark models.

2.2 Quark flavor universal U(1)X

The symmetry-breaking scalar fields are

H = (1,2,
1

2
, XH) , � = (1,1, 0, X�) , (2.9)

where H is the SM Higgs (with U(1)X charge XH) and � is the SM singlet responsible for
the breaking of U(1)X . Shifting the U(1)X charge assignments for all fields by a universal
multiple of the hypercharge, XF ! XF � aYF , gives a physically equivalent theory, cf.
Appendix A.1. The ambiguity in charge assignments is a direct consequence of the freedom
in defining the U(1) subgroups for a symmetry group with several Abelian factors. A
familiar example is the QCD, which, ignoring the anomalies, has a global U(1)V ⇥ U(1)A or,
equivalently, a U(1)L ⇥ U(1)R symmetry.

In what follows, we use the above reparameterization invariance to make H a U(1)X

singlet,
XH = 0 , (2.10)

and thus H is the usual SM Higgs. To simplify the discussion further, we require all quarks
to have the same U(1)X charge,

XQi = XUj = XDk ⌘ Xq, for all i, j, k = 1, 2, 3, (2.11)

such that their masses and the CKM mixing matrix are allowed by the gauge symmetry,
i.e. Y

ij
u Q̄

i
H̃u

j and Y
ij

d
Q̄

i
Hd

j where H̃ = ✏H
⇤. The conditions (2.11) reduce the number

2As a point of reference, this ratio is 6 for the SM hypercharge.
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, XH) , � = (1,1, 0, X�) , (2.9)

where H is the SM Higgs (with U(1)X charge XH) and � is the SM singlet responsible
for the breaking of U(1)X . Shifting the U(1)X charge assignments for all fields f by a
universal multiple of the hypercharge, Xf ! Xf � aYf , gives a physically equivalent theory,
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|
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|
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0 1

!
. (2.10)

The ambiguity in charge assignments is a direct consequence of the freedom in defining the
U(1) subgroups for a symmetry group with several Abelian factors. A familiar example is
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≠ {XL1,3
, −3Xq}

[The “2+1” charge assignment]

(i.e. up to flavor permutation, etc)

Muoquark requirement

The  atlasU(1)X
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extensions some care needs to be taken to remove the potential Goldstone bosons, as well
as to avoid baryon number violating operators at dimension-5. While the catalog of the
models derived in this manuscript provides a good starting point, a detailed discussion of
the neutrino sector is beyond the scope of the present work and is left for future studies.

With the above caveat about neutrino masses in mind let us now move to the classification
of different anomaly free U(1)X models. It is remarkable that almost all anomaly-free charge
assignments XFi 2 [�10, 10] in the quark flavor universal U(1)X automatically satisfy the
muoquark conditions. The list of charge assignments can be classified into two categories:

vector category : XLi = XEi for all i = 1, 2, 3 , (2.14)
chiral category : the rest. (2.15)

In the vector category models the charged lepton Yukawas for all three generations are
allowed by the U(1)X symmetry, while in the chiral category models at least some of the
charged lepton Yukawas are forbidden and thus all the lepton masses are generated only
after the U(1)X symmetry is spontaneously broken.

Before discussing each of the two categories in more detail, let us consider several
examples of muoquarks adopting the nomenclature from Ref. [75]:

• The scalar leptoquark S3 ⌘ (3,3, 1/3, XS3), where XS3 = �Xq � XL2 , gives V � A

contribution to b ! sµ
+
µ

� transitions, see e.g. [1, 75, 77, 83–91]. The condition
in Eq. (2.13b) implies XL2 6= �3Xq such that the dimension-4 operator QQS3 is
forbidden.

• The scalar leptoquark S1 ⌘ (3,1, 1/3, XS1), where XS1 = �Xq � XL2 or XS1 =

�Xq � XE2 , implemented in “vector category” models, couples to both L2 and E2

to give the mt-enhanced contribution to (g � 2)µ, see e.g. [1, 75, 87, 91–95]. The
condition in Eq. (2.13b) is X`2 6= �3Xq.

• The scalar leptoquark R2 ⌘ (3,2, 7/6, XR2), where XR2 = Xq � XL2 or XR2 =

Xq�XE2 , and the condition in Eq. (2.13a) is X`2 6= 3Xq such that dimension-5 operator
ddH

†
R2 is forbidden. Note that otherwise such operators would lead to excessive

proton decay even when suppressed by the Planck scale [75, 96, 97]. This scalar
leptoquark representation is also used to address the (g � 2)µ, see e.g. [75, 91, 93, 95].
We will employ it in Section 4 to build a model for radiative muon mass and (g � 2)µ.

• The vector leptoquark U1 ⌘ (3,1, 2/3, XU1), where XU1 = Xq � XL2 or XU1 =

Xq � XE2 . The baryon number violating dimension-5 operator QdH
†
U1 is forbidden

when X`2 6= 3Xq, Eq. (2.13a). Possible UV completions for the U1 vector muoquark
will be presented in Section 5. This leptoquark representation was extensively discussed
in the literature to address the B-decay anomalies, see e.g. [98–112].

2.2.1 Vector category U(1)X charge assignments

The vector category is defined such that the left-handed and the right-handed e, µ and
⌧ leptons carry the same X charge. Solutions to the anomaly conditions (2.2)–(2.7) that
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20

AG, Stangl, Thomsen, 2103.13991

Model Example I

• Resolves  and  while satisfying all complementary data.

• Minimal type-I seesaw for the neutrino masses. Viable texture.
• No proton decay up to dim-6 nor sizeable cLFV.
• No Landau poles up to the Planck scale.
• Finite naturalness. No tuning.

b → sμμ (g − 2)μ

Admir Greljo | Theoretical Interpretation of Flavour Anomalies
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scale µM , to smelli, this tool automatically takes care
of the renormalization group running down to the me-
son scale as well as the intermediate matching to the
low-energy EFT [84–88] thanks to the wilson [89] pack-
age. It further uses flavio [90] to compute a large
list of electroweak-scale and low-energy precision observ-
ables, including charged LFV and LFU, magnetic mo-
ments, neutral meson mixings, semileptonic and rare me-
son decays, etc. The full list of observables included
in the initial version of smelli can be found in the
appendix of [82], but this list has been extended [91],
and we refer to [92] for the up-to-date version. We use
smelli v2.3.0, which takes into account the most re-
cent results for RK [35] and (g � 2)µ [36] as well as the
current world average of BR(Bs,d ! µµ) from [93], which
includes the most recent LHCb measurement [94]. With
this setup, we are now in position to perform a global fit
in the parameter space of our model.

Shown in Fig. 1 is the preferred region in the ⌘
3L
3 ver-

sus ⌘
1L
3 = ⌘

1R
3 plane for M1 = M3 = 3TeV. We take

⌘̃
1R = 0, as loop-induced contributions from the heavy

right-handed neutrinos are expected to be negligible in
the fit. Muon anomalies clearly prefer the parameter
space far away from the SM limit ⌘

x

3 = 0. The best fit
point is (⌘3L

3 , ⌘
1L
3 = ⌘

1R
3 ) ' (0.42, 0.12) with a ��

2
' 56

compared to the SM point. The current limits from di-
rect searches at the LHC are M3 & 1.7 TeV [95] and
M1 & 1.4 TeV [96], while the final reach of HL-LHC is
projected in [97]. The indirect e↵ects in the high-pT lep-
ton tails are also beyond the HL-LHC projections for the
best fit couplings [98]. The change in the mass is accom-
modated by an approximate linear change in the cou-
plings keeping the same low-energy Wilson coe�cients.
However, the finite naturalness of the Higgs mass and
muon Yukawa, disfavors heavier muoquarks, as discussed
later.

While in principle both muoquarks contribute to all
anomalies, there is a clear factorization, namely S1 dom-
inates in the (g � 2)µ thanks to the chiral enhancement
from the top quark, whereas S3 dominates in b ! sµ

+
µ

�

since it gives a tree-level contribution unlike S1. The
U(2) flavor structure provides su�cient suppression in all
other complementary processes such as KL ! µ

+
µ

� [99].
When varying the O(1) coe�cients in front of the spuri-
ons we find the same goodness of fit: the best fit region is
shifted to accommodate for b ! sµ

+
µ

�, but none of the
complementary observables listed above receive a large
pull.

B. Symmetry breaking

Heavy vector resonances with couplings to both quarks
and leptons have been extensively searched for at the
LHC. The most recent ATLAS 13TeV search with
139 fb�1 of data [100] reports the exclusions on the cou-
plings as a function of the mass in their Fig. 4 (b). A
viable benchmark example in our case is gauge coupling
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FIG. 1. The preferred muoquark Yukawa couplings from
the global fit to low-energy data. Here we choose
⌘3L
i = (Vtd, Vts, 1) ⌘3L

3 , ⌘1L
i = (Vtd, Vts, 1) ⌘1L

3 , and ⌘1R
i =

(0, 0, 1) ⌘1R
3 . The muoquark masses are set to M1 = M3 =

3 TeV.

gX = 0.1 and mass mX = 3TeV. The high-pT dimuon
tails [98] set an upper limit on gX/mX for large mX .
In the opposite limit, the bounds are avoided when gX

is small enough (see Fig. 5 of [98]). It is, however, al-
ways possible to take the decoupling limit, namely large
mX and small gX , without conflicting the muoquark so-
lution of muon anomalies. We expect X to have negligi-
ble e↵ects in flavor physics through suppressed penguins,
which decouple in the same limit.1

The symmetry breaking scalar � develops a VEV
h�i = v� related to the X mass by v� =

p
2mX/3gX

or 14TeV for the benchmark point. Taking M
2
1,3 > 0

and small cross-quartic couplings, guarantees that S1,3

do not develop a VEV, and the part of the scalar poten-
tial relevant for symmetry-breaking is

VH� = �µ
2
H

|H|
2

� µ
2
�|�|

2 + 1
2�H |H|

4

+ 1
4��|�|

4 + ��H |�|
2
|H|

2
. (3)

We can directly relate the potential parameters for the
Higgs VEV v = hHi; v�; the masses of the radial modes
mh, m�; and the mixing angle, which has to satisfy ✓ ⌧ 1

1 A U(1)B�3Lµ
model with vector-like quarks and X as the main

mediator of b ! sµ
+
µ
� anomaly cannot reconcile the Bs meson-

mixing constraints with the high-pT dimuon tails [98].
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Figure 2. Parameter space for the light Xµ solution of the (g � 2)µ anomaly in the U(1)Lµ�L⌧

model. The shaded regions are excluded by various experiments, as denoted in the legend, with
dotted lines giving the future projections for the exclusions, while the 2� region between the black
solid lines is preferred by (g � 2)µ (dashed line for central values).

large (or if the right-handed neutrinos are heavy) their exact values are expected not to
change appreciably the phenomenology of the gauged Lµ � L⌧ model.

In Fig. 2 we show with black lines the 1� parameter band (dashed black for central
values), for which the Lµ � L⌧ model explains the observed (g � 2)µ. The model is not
expected to have any appreciable kinetic mixing parameter and thus the UV value of " is
set to zero. At one loop the muon and tau kinetic mixing diagrams lead to an effective
momentum-dependent mixing, already taken into account in the DarkCast model [51, 177],
which gives an effective coupling of Xµ to the electrons at the percent level. The resulting
constraints (future projections) in Fig. 2 are thus taken directly from DarkCast and are
shown as shaded colored regions (dashed lines) with color coding denoted in the legend.

3.5.2 Gauged B � 3Lµ

The B � 3Lµ gauge group has charges

Xµ = XN2 = �3, Xe,⌧ = XN1,N2 = 0, XQi,Ui,Di =
1
3 . (3.13)

This is another example of the vector category of U(1)X charge assignments. The U(1)B�3Lµ

was the first gauge group used in a muoquark construction [1]. This group is particularly
suitable for the task at hand because it allows for a phenomenologically viable type-I seesaw,
with only one symmetry-breaking scalar, while still forbidding U(1)B-violating dimension-5
operators that could otherwise be induced by S3 leptoquark exchanges. In contrast to the
Lµ � L⌧ model, a sizable kinetic mixing parameter is generated by the RG running. For
this reason we use the benchmark numerical value " = 0.1 gX .
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• The dimension-4 muon Yukawa is forbidden by U(1)X

XL2
≠ XE2

• Introduce two scalar muoquarks S± = (3, 2, 7/6, XS±
)

• Mix them via  breaking U(1)X

Figure 7. Preferred parameter space in the muoquark model for the radiative muon mass generation
as implied by the (g � 2)µ anomaly. See the main text in Sec. 4 for further details.

The preferred region in the S1, S2 mass plane, taking QS = 5/3, that explains the observed
deviations in �aµ is shown in Fig. 7 as the brown shaded band.8

U(1)X completion

The above scenario can be elegantly UV completed in our setup. The scan over the anomaly
free charge assignments in Section 2 reveals a family of solutions for which the dimension-4
muon Yukawa is forbidden. This occurs when the U(1)Xµ charge of the left-handed muon is
different from the charge of the right-handed muon. We assume that in addition to the SM
there are three scalars, the S± in the (3, 2, 7/6) representation of the SM gauge group and
the SM singlet �. The extra scalars carry the following charges under the U(1)Xµ gauge
symmetry

XS+ = �XL2 + XUi = �Xµ + Xq , (4.8)
XS� = �XE2 + XQi = �Xµ � bE2 + Xq , (4.9)
X� = �XS� + XS+ = bE2 . (4.10)

where Xq = (�Xe � Xµ � X⌧ )/9 (see Section 2.2.2). The leptoquarks S+(S�) have allowed
couplings to the left-(right-)handed muons, respectively, i.e., they are the muoquarks. An
explicit mass mixing between S+ and S� is forbidden by the U(1)Xµ gauge symmetry.
However, there is a gauge invariant trilinear scalar coupling

L � �A�S
†
+S� + H.c. , (4.11)

that gives rise to the U(1)Xµ mass mixing term, em2
S

= Av�, once the SM singlet � gets a
VEV, h�i = v� and breaks U(1)Xµ spontaneously. The radiative generation of the muon

8We note in passing that requiring a positive contribution to �aµ even in this more general case still
remains quite restrictive regarding the viable choices for the leptoquark gauge representations. In particular,
the (3, 1, 1/3) scalar leptoquark is not a phenomenologically viable possibility.
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Figure 6. A muoquark model for the radiative muon mass generation that also contributes to the
anomalous magnetic moment through the above diagram. See main text in Sec. 4 for further details.

bound (that the Borexino bound is relevant even for small induced couplings to electrons
we saw already in the case of the Lµ�⌧ model).

Even though the two models, L̃�3B and L̃µ�⌧ , were chosen such that they would avoid
the most stringent bounds, it is clear from Fig. 5 that the Borexino and CCFR bounds are
still strong enough to almost completely close the window on the region of parameter space
that would lead to the explanation of the (g � 2)µ anomalies, assuming that the kinetic
mixing vanishes in the UV.7 It would be interesting to relax the model search criteria beyond
|XF |  10. We anticipate that this would generate additional feasible models with axial
currents that are further suppressed, and also have a larger muon-to-electron charge ratio,
further relaxing the experimental bounds.

4 Muon mass and (g � 2)µ at one loop

The observed smallness of Yukawa couplings can be explained in models in which fermion
masses are generated from radiative corrections [170, 171]. Here we focus on radiatively
generated muon mass. Since both the muon mass and the muon anomalous magnetic
moment are chirality flipping operators, the TeV-scale NP that at one-loop generates the
muon mass then generically also gives correlated one-loop NP contributions to (g � 2)µ [172].

Model example

Let us consider a scenario in which the SM is extended by two scalar leptoquarks, S+ and S�,
in the (3, 2, 7/6) representation of the SM gauge group. This leptoquark representation is
usually called R2 as in Ref. [77], however, for clarity we use a simpler notation in this section.
We assume that the leptoquarks are coupled to the third generation quarks, q

3
L, tR, and the

second generation leptons, `
2
L, µR. The model is assumed to have a Z2 parity symmetry

under which S� and µR are odd, while all the other fields are even,

L � ⌘L tR`
2
L i�2S+ � ⌘R q

3
L µR S� + H.c. . (4.1)

7Note that we still use DarkCast to draw the exclusion regions even though only contributions from
vector couplings are implemented in it at present. While this captures the dominant contributions the
correct bounds should be even slightly stronger than what is shown in Fig. 5.
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Figure 7. Preferred parameter space in the muoquark model for the radiative muon mass generation
as implied by the (g � 2)µ anomaly. See the main text in Sec. 4 for further details.

The preferred region in the S1, S2 mass plane, taking QS = 5/3, that explains the observed
deviations in �aµ is shown in Fig. 7 as the brown shaded band.8

U(1)X completion

The above scenario can be elegantly UV completed in our setup. The scan over the anomaly
free charge assignments in Section 2 reveals a family of solutions for which the dimension-4
muon Yukawa is forbidden. This occurs when the U(1)Xµ charge of the left-handed muon is
different from the charge of the right-handed muon. We assume that in addition to the SM
there are three scalars, the S± in the (3, 2, 7/6) representation of the SM gauge group and
the SM singlet �. The extra scalars carry the following charges under the U(1)Xµ gauge
symmetry

XS+ = �XL2 + XUi = �Xµ + Xq , (4.8)
XS� = �XE2 + XQi = �Xµ � bE2 + Xq , (4.9)
X� = �XS� + XS+ = bE2 . (4.10)

where Xq = (�Xe � Xµ � X⌧ )/9 (see Section 2.2.2). The leptoquarks S+(S�) have allowed
couplings to the left-(right-)handed muons, respectively, i.e., they are the muoquarks. An
explicit mass mixing between S+ and S� is forbidden by the U(1)Xµ gauge symmetry.
However, there is a gauge invariant trilinear scalar coupling

L � �A�S
†
+S� + H.c. , (4.11)

that gives rise to the U(1)Xµ mass mixing term, em2
S

= Av�, once the SM singlet � gets a
VEV, h�i = v� and breaks U(1)Xµ spontaneously. The radiative generation of the muon

8We note in passing that requiring a positive contribution to �aµ even in this more general case still
remains quite restrictive regarding the viable choices for the leptoquark gauge representations. In particular,
the (3, 1, 1/3) scalar leptoquark is not a phenomenologically viable possibility.
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Charges:

Figure 5. Parameter space for the light X solution to the (g � 2)µ anomaly in the U(1)L̃�3B model.
The shaded regions are excluded by various experiments, while the region between the black lines is
preferred by (g � 2)µ.

3.5.8 Chiral models

We now entertain some of the more exotic options for the U(1)X group from among the
models of Sec. 2.2.2 with chiral charge assignments.
L̃ � 3B model:

(XL1 , XL2 , XL3) = (�3, 8, 4), (XE1 , XE2 , XE3) = (�2, 9, 2),

(XN1 , XN2 , XN3) = (�1, 3, 7), XQi,Di,Ui = �1, (3.18)

[JZ: Added:]L̃ � 9B3 model:

(XL1 , XL2 , XL3) = (�3, 8, 4), (XE1 , XE2 , XE3) = (�2, 9, 2),

(XN1 , XN2 , XN3) = (�1, 3, 7), XQ3,D3,U3 = �3, XQ1,2,D1,2,U1,2 = 0, (3.19)

L̃µ�⌧ model:

(XL1 , XL2 , XL3) = (0, 7, �7), (XE1 , XE2 , XE3) = (�3, 8, �5),

(XN1 , XN2 , XN3) = (5, 3, 8), XQi,Di,Ui = 0. (3.20)

Common for these models is that they have large vectorial coupling to the muons and only
a small axial component, which then maximizes the NP contributions to the (g � 2)µ with
the right sign to explain the anomaly. Both models also maintain a large ratio between
the muon and electron charges, without which there is little hope of evading the Borexino
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Figure 5. Parameter space for the light X solution to the (g � 2)µ anomaly in the U(1)L̃�3B model.
The shaded regions are excluded by various experiments, while the region between the black lines is
preferred by (g � 2)µ.

3.5.8 Chiral models

We now entertain some of the more exotic options for the U(1)X group from among the
models of Sec. 2.2.2 with chiral charge assignments.
L̃ � 3B model:

(XL1 , XL2 , XL3) = (�3, 8, 4), (XE1 , XE2 , XE3) = (�2, 9, 2),

(XN1 , XN2 , XN3) = (�1, 3, 7), XQi,Di,Ui = �1, (3.18)

[JZ: Added:]L̃ � 9B3 model:

(XL1 , XL2 , XL3) = (�3, 8, 4), (XE1 , XE2 , XE3) = (�2, 9, 2),

(XN1 , XN2 , XN3) = (�1, 3, 7), XQ3,D3,U3 = �3, XQ1,2,D1,2,U1,2 = 0, (3.19)

L̃µ�⌧ model:

(XL1 , XL2 , XL3) = (0, 7, �7), (XE1 , XE2 , XE3) = (�3, 8, �5),

(XN1 , XN2 , XN3) = (5, 3, 8), XQi,Di,Ui = 0. (3.20)

Common for these models is that they have large vectorial coupling to the muons and only
a small axial component, which then maximizes the NP contributions to the (g � 2)µ with
the right sign to explain the anomaly. Both models also maintain a large ratio between
the muon and electron charges, without which there is little hope of evading the Borexino
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Figure 5. Parameter space for the light X solution to the (g � 2)µ anomaly in the U(1)L̃�3B model.
The shaded regions are excluded by various experiments, while the region between the black lines is
preferred by (g � 2)µ.

3.5.8 Chiral models

We now entertain some of the more exotic options for the U(1)X group from among the
models of Sec. 2.2.2 with chiral charge assignments.
L̃ � 3B model:

(XL1 , XL2 , XL3) = (�3, 8, 4), (XE1 , XE2 , XE3) = (�2, 9, 2),

(XN1 , XN2 , XN3) = (�1, 3, 7), XQi,Di,Ui = �1, (3.18)

[JZ: Added:]L̃ � 9B3 model:

(XL1 , XL2 , XL3) = (�3, 8, 4), (XE1 , XE2 , XE3) = (�2, 9, 2),

(XN1 , XN2 , XN3) = (�1, 3, 7), XQ3,D3,U3 = �3, XQ1,2,D1,2,U1,2 = 0, (3.19)

L̃µ�⌧ model:

(XL1 , XL2 , XL3) = (0, 7, �7), (XE1 , XE2 , XE3) = (�3, 8, �5),

(XN1 , XN2 , XN3) = (5, 3, 8), XQi,Di,Ui = 0. (3.20)

Common for these models is that they have large vectorial coupling to the muons and only
a small axial component, which then maximizes the NP contributions to the (g � 2)µ with
the right sign to explain the anomaly. Both models also maintain a large ratio between
the muon and electron charges, without which there is little hope of evading the Borexino
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• The dimension-4 muon Yukawa is forbidden by U(1)X
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Figure 4. A muoquark model for the radiative muon mass generation that also contributes to

the anomalous magnetic moment through the above diagram. See main text in Sec. 5 for further

details.

5 Muon mass and (g � 2)µ at one loop

The observed smallness of Yukawa couplings can be explained in models in which fermion
masses are generated from radiative corrections [61, 62]. Here we focus on the case of
radiatively generated muon mass. Since both the muon mass and the muon anomalous
magnetic moment are chirality flipping operators, the TeV-scale NP that generates at one-
loop the muon mass then generically also gives correlated NP contributions to (g �2)µ [63].

Let us consider a scenario in which the SM is extended by two scalar leptoquarks,
S+ and S�, in (3, 2, 7/6) representation of the SM gauge group. We assume that the
leptoquarks are coupled to the third generation quarks, q

3
L
, tR, and the second generation

leptons, `
2
L
, µR. The model is assumed to have a Z2 parity symmetry under which S� and

µR are odd while all the other fields are even,

L � ⌘L tR`
2
L i�2S+ � ⌘R q

3
L µR S� + H.c. . (5.1)

The global phase rotations can be used to make the couplings ⌘L,R real without loss of
generality. We assume that the left-handed quark doublet is defined in the down-quark
mass eigenstate basis and take Vtb = 1.

The Z2 symmetry forbids the direct muon Yukawa coupling, `
2
LH̃µR, which is generated

only radiatively due to the presence of a Z2 soft breaking term,

Lbreak � �m̃
2
S
†
+S� + H.c. . (5.2)

This induces a finite one-loop contribution to the muon mass as well as to the anomalous
magnetic moment. Let SH and SL be the heavy and the light mass eigenstates, respectively,
while ✓LH is their mixing angle. For simplicity, let us assume m

2
S

⌘ m
2
S+

= m
2
S�

and m̃
2

⌧

m
2
S
, leading to the maximal mixing ✓LH = ⇡/4 and the physical masses m

2
SH(L)

= m
2
S

±m̃
2.

In this limit,

�aµ =
m

2
µ

m
2
t

F (m
2
S/m

2
t ) , (5.3)

where
F (x) = 2

QS(1 � x
2
) + x(2 + x)

(x � 1)2
+

1 + 2QS(1 � x) + 2x

1 � x + log x
. (5.4)
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XL2
≠ XE2

• Introduce two scalar muoquarks S± = (3, 2, 7/6, XS±
)

• Mix them via  breaking U(1)X
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Figure 6. A muoquark model for the radiative muon mass generation that also contributes to the
anomalous magnetic moment through the above diagram. See main text in Sec. 4 for further details.

bound (that the Borexino bound is relevant even for small induced couplings to electrons
we saw already in the case of the Lµ�⌧ model).

Even though the two models, L̃�3B and L̃µ�⌧ , were chosen such that they would avoid
the most stringent bounds, it is clear from Fig. 5 that the Borexino and CCFR bounds are
still strong enough to almost completely close the window on the region of parameter space
that would lead to the explanation of the (g � 2)µ anomalies, assuming that the kinetic
mixing vanishes in the UV.7 It would be interesting to relax the model search criteria beyond
|XF |  10. We anticipate that this would generate additional feasible models with axial
currents that are further suppressed, and also have a larger muon-to-electron charge ratio,
further relaxing the experimental bounds.

4 Muon mass and (g � 2)µ at one loop

The observed smallness of Yukawa couplings can be explained in models in which fermion
masses are generated from radiative corrections [170, 171]. Here we focus on radiatively
generated muon mass. Since both the muon mass and the muon anomalous magnetic
moment are chirality flipping operators, the TeV-scale NP that at one-loop generates the
muon mass then generically also gives correlated one-loop NP contributions to (g � 2)µ [172].

Model example

Let us consider a scenario in which the SM is extended by two scalar leptoquarks, S+ and S�,
in the (3, 2, 7/6) representation of the SM gauge group. This leptoquark representation is
usually called R2 as in Ref. [77], however, for clarity we use a simpler notation in this section.
We assume that the leptoquarks are coupled to the third generation quarks, q

3
L, tR, and the

second generation leptons, `
2
L, µR. The model is assumed to have a Z2 parity symmetry

under which S� and µR are odd, while all the other fields are even,

L � ⌘L tR`
2
L i�2S+ � ⌘R q

3
L µR S� + H.c. . (4.1)

7Note that we still use DarkCast to draw the exclusion regions even though only contributions from
vector couplings are implemented in it at present. While this captures the dominant contributions the
correct bounds should be even slightly stronger than what is shown in Fig. 5.
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Figure 7. Preferred parameter space in the muoquark model for the radiative muon mass generation
as implied by the (g � 2)µ anomaly. See the main text in Sec. 4 for further details.

The preferred region in the S1, S2 mass plane, taking QS = 5/3, that explains the observed
deviations in �aµ is shown in Fig. 7 as the brown shaded band.8

U(1)X completion

The above scenario can be elegantly UV completed in our setup. The scan over the anomaly
free charge assignments in Section 2 reveals a family of solutions for which the dimension-4
muon Yukawa is forbidden. This occurs when the U(1)Xµ charge of the left-handed muon is
different from the charge of the right-handed muon. We assume that in addition to the SM
there are three scalars, the S± in the (3, 2, 7/6) representation of the SM gauge group and
the SM singlet �. The extra scalars carry the following charges under the U(1)Xµ gauge
symmetry

XS+ = �XL2 + XUi = �Xµ + Xq , (4.8)
XS� = �XE2 + XQi = �Xµ � bE2 + Xq , (4.9)
X� = �XS� + XS+ = bE2 . (4.10)

where Xq = (�Xe � Xµ � X⌧ )/9 (see Section 2.2.2). The leptoquarks S+(S�) have allowed
couplings to the left-(right-)handed muons, respectively, i.e., they are the muoquarks. An
explicit mass mixing between S+ and S� is forbidden by the U(1)Xµ gauge symmetry.
However, there is a gauge invariant trilinear scalar coupling

L � �A�S
†
+S� + H.c. , (4.11)

that gives rise to the U(1)Xµ mass mixing term, em2
S

= Av�, once the SM singlet � gets a
VEV, h�i = v� and breaks U(1)Xµ spontaneously. The radiative generation of the muon

8We note in passing that requiring a positive contribution to �aµ even in this more general case still
remains quite restrictive regarding the viable choices for the leptoquark gauge representations. In particular,
the (3, 1, 1/3) scalar leptoquark is not a phenomenologically viable possibility.
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mμ, Δaμ

Expanding the muon mass and the anomalous magnetic moment to the leading order in
mt/mS and emS/mS (see [97, 182] for full expressions),

mµ ⇡
3

16⇡2
mt⌘L⌘R

em2
S

m
2
S

,

�aµ ⇡
3

16⇡2
⌘L⌘R

mµmt em2
S

m
4
S

✓
5 � 4QS + 2(1 � QS) log

m
2
t

m
2
S

◆
.

(4.4)

Assuming that mµ is entirely generated by the above one loop radiative correction, the ratio
�aµ/mµ depends only on two unknowns, mS and QS ,

�aµ ⇡
m

2
µ

m
2
S

✓
5 � 4QS + 2(QS � 1) log

m
2
S

m
2
t

◆
. (4.5)

Since �aµ needs to be positive, and mS � mt experimentally, this puts a constraint on
possible values of leptoquark charge, QS & 1. In our example, the electric charge of the
scalars running in the loop is QS = 5/3. Consequently, �aµ = (251 ± 59) ⇥ 10

�11 points to
mS 2 [5 � 7] TeV. For ⌘L⌘R ⇡ 1, the soft breaking mass needed to match the muon mass is
then emS ⇡ 1 TeV.

A wider parameter space opens up, if we move away from the limit mS+ 6= mS� .
Assuming as before that the muon mass is entirely due to the one loop radiative correction,
Eq. (4.5) generalizes to [183]

�aµ =
m

2
µ

m
2
t

F̃

 
m

2
S1

m
2
t

,
m

2
S2

m
2
t

!
, (4.6)

where

F̃ (x1, x2) =

✓
x1 log x1

1 � x1
�

x2 log x2

1 � x2

◆�1
3x1 � 1
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(4.7)

The preferred region in the S1, S2 mass plane, taking QS = 5/3, that explains the observed
deviations in �aµ is shown in Fig. 8 as the brown shaded band.7

U(1)X completion

The above scenario can be elegantly UV completed in our setup. The scan over the anomaly
free charge assignments in Section 2 reveals a family of solutions for which the dimension-4
muon Yukawa is forbidden. This occurs when the U(1)Xµ charge of the left-handed muon is
different from the charge of the right-handed muon. We assume that in addition to the SM
there are three scalars, the S± in the (3, 2, 7/6) representation of the SM gauge group and

7We note in passing that requiring a positive contribution to �aµ even in this more general case still
remains quite restrictive regarding the viable choices for the leptoquark gauge representations. In particular,
the (3, 1, 1/3) scalar leptoquark is not a phenomenologically viable possibility.
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• The dimension-4 muon Yukawa is forbidden by U(1)X

tL
tR

�L

�

�R

S+ S�
tR tL

H

�

Figure 4. A muoquark model for the radiative muon mass generation that also contributes to

the anomalous magnetic moment through the above diagram. See main text in Sec. 5 for further

details.

5 Muon mass and (g � 2)µ at one loop

The observed smallness of Yukawa couplings can be explained in models in which fermion
masses are generated from radiative corrections [61, 62]. Here we focus on the case of
radiatively generated muon mass. Since both the muon mass and the muon anomalous
magnetic moment are chirality flipping operators, the TeV-scale NP that generates at one-
loop the muon mass then generically also gives correlated NP contributions to (g �2)µ [63].

Let us consider a scenario in which the SM is extended by two scalar leptoquarks,
S+ and S�, in (3, 2, 7/6) representation of the SM gauge group. We assume that the
leptoquarks are coupled to the third generation quarks, q

3
L
, tR, and the second generation

leptons, `
2
L
, µR. The model is assumed to have a Z2 parity symmetry under which S� and

µR are odd while all the other fields are even,

L � ⌘L tR`
2
L i�2S+ � ⌘R q

3
L µR S� + H.c. . (5.1)

The global phase rotations can be used to make the couplings ⌘L,R real without loss of
generality. We assume that the left-handed quark doublet is defined in the down-quark
mass eigenstate basis and take Vtb = 1.

The Z2 symmetry forbids the direct muon Yukawa coupling, `
2
LH̃µR, which is generated

only radiatively due to the presence of a Z2 soft breaking term,

Lbreak � �m̃
2
S
†
+S� + H.c. . (5.2)

This induces a finite one-loop contribution to the muon mass as well as to the anomalous
magnetic moment. Let SH and SL be the heavy and the light mass eigenstates, respectively,
while ✓LH is their mixing angle. For simplicity, let us assume m

2
S

⌘ m
2
S+

= m
2
S�

and m̃
2

⌧

m
2
S
, leading to the maximal mixing ✓LH = ⇡/4 and the physical masses m

2
SH(L)

= m
2
S

±m̃
2.

In this limit,

�aµ =
m

2
µ

m
2
t

F (m
2
S/m

2
t ) , (5.3)

where
F (x) = 2

QS(1 � x
2
) + x(2 + x)

(x � 1)2
+

1 + 2QS(1 � x) + 2x

1 � x + log x
. (5.4)
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XL2
≠ XE2

• Introduce two scalar muoquarks S± = (3, 2, 7/6, XS±
)

• Mix them via  breaking U(1)X
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Figure 6. A muoquark model for the radiative muon mass generation that also contributes to the
anomalous magnetic moment through the above diagram. See main text in Sec. 4 for further details.

bound (that the Borexino bound is relevant even for small induced couplings to electrons
we saw already in the case of the Lµ�⌧ model).

Even though the two models, L̃�3B and L̃µ�⌧ , were chosen such that they would avoid
the most stringent bounds, it is clear from Fig. 5 that the Borexino and CCFR bounds are
still strong enough to almost completely close the window on the region of parameter space
that would lead to the explanation of the (g � 2)µ anomalies, assuming that the kinetic
mixing vanishes in the UV.7 It would be interesting to relax the model search criteria beyond
|XF |  10. We anticipate that this would generate additional feasible models with axial
currents that are further suppressed, and also have a larger muon-to-electron charge ratio,
further relaxing the experimental bounds.

4 Muon mass and (g � 2)µ at one loop

The observed smallness of Yukawa couplings can be explained in models in which fermion
masses are generated from radiative corrections [170, 171]. Here we focus on radiatively
generated muon mass. Since both the muon mass and the muon anomalous magnetic
moment are chirality flipping operators, the TeV-scale NP that at one-loop generates the
muon mass then generically also gives correlated one-loop NP contributions to (g � 2)µ [172].

Model example

Let us consider a scenario in which the SM is extended by two scalar leptoquarks, S+ and S�,
in the (3, 2, 7/6) representation of the SM gauge group. This leptoquark representation is
usually called R2 as in Ref. [77], however, for clarity we use a simpler notation in this section.
We assume that the leptoquarks are coupled to the third generation quarks, q

3
L, tR, and the

second generation leptons, `
2
L, µR. The model is assumed to have a Z2 parity symmetry

under which S� and µR are odd, while all the other fields are even,

L � ⌘L tR`
2
L i�2S+ � ⌘R q

3
L µR S� + H.c. . (4.1)

7Note that we still use DarkCast to draw the exclusion regions even though only contributions from
vector couplings are implemented in it at present. While this captures the dominant contributions the
correct bounds should be even slightly stronger than what is shown in Fig. 5.
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Figure 7. Preferred parameter space in the muoquark model for the radiative muon mass generation
as implied by the (g � 2)µ anomaly. See the main text in Sec. 4 for further details.

The preferred region in the S1, S2 mass plane, taking QS = 5/3, that explains the observed
deviations in �aµ is shown in Fig. 7 as the brown shaded band.8

U(1)X completion

The above scenario can be elegantly UV completed in our setup. The scan over the anomaly
free charge assignments in Section 2 reveals a family of solutions for which the dimension-4
muon Yukawa is forbidden. This occurs when the U(1)Xµ charge of the left-handed muon is
different from the charge of the right-handed muon. We assume that in addition to the SM
there are three scalars, the S± in the (3, 2, 7/6) representation of the SM gauge group and
the SM singlet �. The extra scalars carry the following charges under the U(1)Xµ gauge
symmetry

XS+ = �XL2 + XUi = �Xµ + Xq , (4.8)
XS� = �XE2 + XQi = �Xµ � bE2 + Xq , (4.9)
X� = �XS� + XS+ = bE2 . (4.10)

where Xq = (�Xe � Xµ � X⌧ )/9 (see Section 2.2.2). The leptoquarks S+(S�) have allowed
couplings to the left-(right-)handed muons, respectively, i.e., they are the muoquarks. An
explicit mass mixing between S+ and S� is forbidden by the U(1)Xµ gauge symmetry.
However, there is a gauge invariant trilinear scalar coupling

L � �A�S
†
+S� + H.c. , (4.11)

that gives rise to the U(1)Xµ mass mixing term, em2
S

= Av�, once the SM singlet � gets a
VEV, h�i = v� and breaks U(1)Xµ spontaneously. The radiative generation of the muon

8We note in passing that requiring a positive contribution to �aµ even in this more general case still
remains quite restrictive regarding the viable choices for the leptoquark gauge representations. In particular,
the (3, 1, 1/3) scalar leptoquark is not a phenomenologically viable possibility.
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Figure 7. Preferred parameter space in the muoquark model for the radiative muon mass generation
as implied by the (g � 2)µ anomaly. See the main text in Sec. 4 for further details.

The preferred region in the S1, S2 mass plane, taking QS = 5/3, that explains the observed
deviations in �aµ is shown in Fig. 7 as the brown shaded band.8

U(1)X completion

The above scenario can be elegantly UV completed in our setup. The scan over the anomaly
free charge assignments in Section 2 reveals a family of solutions for which the dimension-4
muon Yukawa is forbidden. This occurs when the U(1)Xµ charge of the left-handed muon is
different from the charge of the right-handed muon. We assume that in addition to the SM
there are three scalars, the S± in the (3, 2, 7/6) representation of the SM gauge group and
the SM singlet �. The extra scalars carry the following charges under the U(1)Xµ gauge
symmetry

XS+ = �XL2 + XUi = �Xµ + Xq , (4.8)
XS� = �XE2 + XQi = �Xµ � bE2 + Xq , (4.9)
X� = �XS� + XS+ = bE2 . (4.10)

where Xq = (�Xe � Xµ � X⌧ )/9 (see Section 2.2.2). The leptoquarks S+(S�) have allowed
couplings to the left-(right-)handed muons, respectively, i.e., they are the muoquarks. An
explicit mass mixing between S+ and S� is forbidden by the U(1)Xµ gauge symmetry.
However, there is a gauge invariant trilinear scalar coupling

L � �A�S
†
+S� + H.c. , (4.11)

that gives rise to the U(1)Xµ mass mixing term, em2
S

= Av�, once the SM singlet � gets a
VEV, h�i = v� and breaks U(1)Xµ spontaneously. The radiative generation of the muon

8We note in passing that requiring a positive contribution to �aµ even in this more general case still
remains quite restrictive regarding the viable choices for the leptoquark gauge representations. In particular,
the (3, 1, 1/3) scalar leptoquark is not a phenomenologically viable possibility.
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• Testing accidental symmetries is an opportunity: Efficient probe of 
high-energy dynamics.

• Flavour anomalies might be footprints of physics beyond the SM.

• Gauged lepton flavor is an interesting direction. 

• We have just scratched the surface of  phenomenology. U(1)X

27

Conclusions
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6

Type A Type B Type C

RK(⇤) , b ! sµµ S3 S3 heavy X

(g � 2)µ S1/R2 light X S1/R2

TABLE I. Three types of muoquark models, which can ad-
dress the muon anomalies for a variety of lepton-flavored
U(1)X gauge groups. For each model class, a field respon-
sible for addressing a corresponding anomaly, is listed. The
an R2 muoquark with SM charges (3, 2, 7/6) can be used as
an alternative to S1 for addressing the (g � 2)µ.

III. ALTERNATIVE MODELS

We now turn our focus to alternative models for the
muon and B-decay anomalies, in some of which the
U(1)B�3Lµ

symmetry is exchanged for other U(1)X sym-
metries. These models o↵er di↵erent scenarios of phe-
nomenological interest.

A. The scenarios for muon anomalies

U(1)B�3Lµ
is only one example of many possible

lepton-flavored gauge extensions of the SM, under which
leptoquarks become muoquarks. Variations of the model
can use di↵erent choices of U(1)X symmetry to ensure
the leptoquarks coupling exclusively to second genera-
tion leptons and fall into three classes shown in Table I
based on what mediators are responsible for the RK(⇤)

and (g � 2)µ anomalies. Below we give some specific ex-
amples of these variations:

Type A — As a showcase example, we trade the
U(1)B�3Lµ

for a U(1)Lµ�L⌧
gauge symmetry to obtain an

extension of the leptoquark model of Ref. [71]. The lepto-
quarks are assigned charge �1 under the symmetry, such
that they still couple exclusively to 2nd generation lep-
tons. The minimal type-I seesaw realization of the neu-
trino mass with the U(1)Lµ�L⌧

-breaking scalar of charge
+1 predicts the two-zero minor structure CR, which
shows some tension in fitting ✓23 and

P
i
m⌫i

[76], thus
more elaborate model building may be needed [133].4

The muoquark solution of the muon anomalies dis-
cussed above applies equally to this model. The main
phenomenological di↵erence is that the gauge vector X

does not couple to quarks and is less constrained at col-
liders. Thus, the X field can more easily elude cur-
rent experimental bound (see Fig. 2 of [43]). For exam-
ple, constraints from neutrino trident production requires
mX & 60 (200) GeV for gX ⇠ 0.1 (0.3). Again, X and �
can simply be decoupled in the limit of the large v� and

4 We will not explore these constructions in any detail here but
merely reiterate the point that a charge-1 scalar is poten-
tially problematic since it enables a baryon-number-violating
dimension-5 operator.

FIG. 3. Allowed parameter space for the light X solution to
the (g � 2)µ anomaly in the U(1)B�3Lµ

model. The shaded
regions are excluded by various experiments, while the region
between the black lines is preferred by (g � 2)µ. The upper
(lower) plot uses kinetic mixing "BX = gX ("BX = gX/10).

small gauge coupling. This scenario belongs to Type A
class of models as explained in Table I.
Type B — A second avenue to address (g �2)µ arises

in this model, invoking a light U(1)Lµ�L⌧
gauge boson X

as a mediator running in the loop [40, 43, 134]. The dis-
crepancy between the experiment and the SM prediction
can be resolved with mX ⇠ 20 MeV and gauge coupling
gX ⇠ 5 · 10�4, nestling snugly in the window allowed
by current experimental constraints, such as CCFR and
Borexino [43, 44]. In fact, even the future DUNE experi-
ment is not expected to cover the entire window [44]. In
this scenario, S1 is entirely superfluous to the anomalies
and can be removed from the model altogether. Addi-
tionally, the small allowed region for X mass and cou-
plings gives a sharp prediction for the U(1)Lµ�L⌧

sector.
We have checked that the small gauge coupling and as-
sociated small kinetic mixing are stable under radiative
corrections. The RK(⇤) anomaly in this scenario is still
explained by a tree-level mediation of S3, and with a
similar allowed parameter space as before.

The U(1)Lµ�L⌧
-breaking VEV, v�, is given as v� =

p
2mX/|q�|gX ⇠ 60 GeV/|q�| while the cross-quartic

coupling induces mixing between real scalars h and �.
This scenario has a chance to leave observable imprints
in the overall Higgs couplings or in the invisible Higgs
decays (h ! XX) if the cross quartic in Eq. (3) is large

Admir Greljo | Theoretical Interpretation of Flavour Anomalies
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Figure 1. Parameter space for the light Xµ solution to the (g � 2)µ anomaly with the 2� region
and the central values in solid and dashed black, respectively. The gray region is excluded by the
neutrino trident production (see Section 3.4). In the orange region, the LHCb measurement of
R

[1.1,6]
K can be explained at the 1� level while satisfying the constraint on q

bs
L,R from BR(B ! K⌫⌫).

meson mixing. Since right-handed quark couplings are not needed to explain the anomalies
in rare B decays (cf. e.g. [40]), in the following we set g

bs

R
= 0. Here we focus on light

Xµ with mX < mB � mK , such that the most important constraint on g
bs

L
comes from

BR(B ! K⌫⌫) [170–173]. For BR(X ! ⌫⌫) ' 1, this bound is given by [169]

g
bs

L . 0.7 ⇥ 10
�8 mX

GeV
. (3.9)

Consequently, an explanation of R
K(⇤) and the b ! sµµ anomalies requires sizable Xµµ

couplings.
Let us now consider the one-loop contributions to (g � 2)µ from Xµ and either e, µ

or ⌧ running in the loop (forgetting for the moment about UV completions). For e and ⌧

running in the loop, the Xµ couplings are flavor violating, a possibility suggested in [124].

– 16 –
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• Muoquark requirement

[276 inequivalent solutions]

U(1)
3
X :

3X

i=1

(6X
3
Qi

+ 2X
3
Li

� 3X
3
Ui

� 3X
3
Di

� X
3
Ei

� X
3
Ni

) = 0 . (2.7)

We consider only rational solutions motivated by the unification scenario, i.e., embedding the
U(1)X into a simple Lie group at high-energies. We can work with integer charges without
loss of generality, since for any set of rational charges {pFi/qFi}, there is an equivalent
set of integer charges obtained by rescaling the gauge coupling gX with the least common
denominator. Any set of integer charges {XFi} satisfying the anomaly conditions (2.2)–(2.7)
can be used to generate up to (3!)

6 inequivalent solutions (and a correspondingly smaller set,
if some of the charges for different families coincide), by permuting the flavor specific charges
within each species. Below, we list the solutions to the Diophantine equations (2.2)–(2.7)
up to this freedom of family permutations.

Still, this leaves us with infinitely many integer solutions of the anomaly cancellation
conditions. For concreteness, we limit the maximal ratio of the largest and the smallest
nonzero charge magnitudes to be  10.2 In the following we then give an exhaustive set of
inequivalent integer solutions of Eqs. (2.2)–(2.7) with

� 10  XFi  10 for every Fi in Eq. (2.1), (2.8)

building on the work of Ref. [80], while imposing further constraints to produce viable
muoquark models.

2.2 Quark flavor universal U(1)X

The symmetry-breaking scalar fields are

H = (1,2,
1

2
, XH) , � = (1,1, 0, X�) , (2.9)

where H is the SM Higgs (with U(1)X charge XH) and � is the SM singlet responsible for
the breaking of U(1)X . Shifting the U(1)X charge assignments for all fields by a universal
multiple of the hypercharge, XF ! XF � aYF , gives a physically equivalent theory, cf.
Appendix A.1. The ambiguity in charge assignments is a direct consequence of the freedom
in defining the U(1) subgroups for a symmetry group with several Abelian factors. A
familiar example is the QCD, which, ignoring the anomalies, has a global U(1)V ⇥ U(1)A or,
equivalently, a U(1)L ⇥ U(1)R symmetry.

In what follows, we use the above reparameterization invariance to make H a U(1)X

singlet,
XH = 0 , (2.10)

and thus H is the usual SM Higgs. To simplify the discussion further, we require all quarks
to have the same U(1)X charge,

XQi = XUj = XDk ⌘ Xq, for all i, j, k = 1, 2, 3, (2.11)

such that their masses and the CKM mixing matrix are allowed by the gauge symmetry,
i.e. Y

ij
u Q̄

i
H̃u

j and Y
ij

d
Q̄

i
Hd

j where H̃ = ✏H
⇤. The conditions (2.11) reduce the number

2As a point of reference, this ratio is 6 for the SM hypercharge.
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extensions some care needs to be taken to remove the potential Goldstone bosons, as well
as to avoid baryon number violating operators at dimension-5. While the catalog of the
models derived in this manuscript provides a good starting point, a detailed discussion of
the neutrino sector is beyond the scope of the present work and is left for future studies.

With the above caveat about neutrino masses in mind let us now move to the classification
of different anomaly free U(1)X models. It is remarkable that almost all anomaly-free charge
assignments XFi 2 [�10, 10] in the quark flavor universal U(1)X automatically satisfy the
muoquark conditions. The list of charge assignments can be classified into two categories:

vector category : XLi = XEi for all i = 1, 2, 3 , (2.14)
chiral category : the rest. (2.15)

In the vector category models the charged lepton Yukawas for all three generations are
allowed by the U(1)X symmetry, while in the chiral category models at least some of the
charged lepton Yukawas are forbidden and thus all the lepton masses are generated only
after the U(1)X symmetry is spontaneously broken.

Before discussing each of the two categories in more detail, let us consider several
examples of muoquarks adopting the nomenclature from Ref. [75]:

• The scalar leptoquark S3 ⌘ (3,3, 1/3, XS3), where XS3 = �Xq � XL2 , gives V � A

contribution to b ! sµ
+
µ

� transitions, see e.g. [1, 75, 77, 83–91]. The condition
in Eq. (2.13b) implies XL2 6= �3Xq such that the dimension-4 operator QQS3 is
forbidden.

• The scalar leptoquark S1 ⌘ (3,1, 1/3, XS1), where XS1 = �Xq � XL2 or XS1 =

�Xq � XE2 , implemented in “vector category” models, couples to both L2 and E2

to give the mt-enhanced contribution to (g � 2)µ, see e.g. [1, 75, 87, 91–95]. The
condition in Eq. (2.13b) is X`2 6= �3Xq.

• The scalar leptoquark R2 ⌘ (3,2, 7/6, XR2), where XR2 = Xq � XL2 or XR2 =

Xq�XE2 , and the condition in Eq. (2.13a) is X`2 6= 3Xq such that dimension-5 operator
ddH

†
R2 is forbidden. Note that otherwise such operators would lead to excessive

proton decay even when suppressed by the Planck scale [75, 96, 97]. This scalar
leptoquark representation is also used to address the (g � 2)µ, see e.g. [75, 91, 93, 95].
We will employ it in Section 4 to build a model for radiative muon mass and (g � 2)µ.

• The vector leptoquark U1 ⌘ (3,1, 2/3, XU1), where XU1 = Xq � XL2 or XU1 =

Xq � XE2 . The baryon number violating dimension-5 operator QdH
†
U1 is forbidden

when X`2 6= 3Xq, Eq. (2.13a). Possible UV completions for the U1 vector muoquark
will be presented in Section 5. This leptoquark representation was extensively discussed
in the literature to address the B-decay anomalies, see e.g. [98–112].

2.2.1 Vector category U(1)X charge assignments

The vector category is defined such that the left-handed and the right-handed e, µ and
⌧ leptons carry the same X charge. Solutions to the anomaly conditions (2.2)–(2.7) that

– 7 –

The  atlasU(1)X

Quark flavor universal

•  are allowed => Yu,d

Gravity2
⇥ U(1)X :

3X

i=1

(6XQi + 2XLi � 3XUi � 3XDi � XEi � XNi) = 0 , (2.5)

U(1)Y ⇥ U(1)
2
X :

3X

i=1

(X
2
Qi

� X
2
Li

� 2X
2
Ui

+ X
2
Di

+ X
2
Ei

) = 0 , (2.6)

U(1)
3
X :

3X

i=1

(6X
3
Qi

+ 2X
3
Li

� 3X
3
Ui

� 3X
3
Di

� X
3
Ei

� X
3
Ni

) = 0 . (2.7)

We consider only rational solutions motivated by the unification scenario, i.e., embedding the
U(1)X into a simple Lie group at high-energies. We can work with integer charges without
loss of generality, since for any set of rational charges {pFi/qFi}, there is an equivalent
set of integer charges obtained by rescaling the gauge coupling gX with the least common
denominator. Any set of integer charges {XFi} satisfying the anomaly conditions (2.2)–(2.7)
can be used to generate up to (3!)

6 inequivalent solutions (and a correspondingly smaller set,
if some of the charges for different families coincide), by permuting the flavor specific charges
within each species. Below, we list the solutions to the Diophantine equations (2.2)–(2.7)
up to this freedom of family permutations.

Still, this leaves us with infinitely many integer solutions of the anomaly cancellation
conditions. For concreteness, we limit the maximal ratio of the largest and the smallest
nonzero charge magnitudes to be  10.2 In the following we then give an exhaustive set of
inequivalent integer solutions of Eqs. (2.2)–(2.7) with

� 10  XFi  10 for every Fi in Eq. (2.1), (2.8)

building on the work of Ref. [82], while imposing further constraints to produce viable
muoquark models.

2.2 Quark flavor universal U(1)X

The symmetry-breaking scalar fields are

H = (1,2,
1

2
, XH) , � = (1,1, 0, X�) , (2.9)

where H is the SM Higgs (with U(1)X charge XH) and � is the SM singlet responsible
for the breaking of U(1)X . Shifting the U(1)X charge assignments for all fields f by a
universal multiple of the hypercharge, Xf ! Xf � aYf , gives a physically equivalent theory,
cf. Appendix A.1. In particular, after a linear invertible field transformation qf = (Yf , Xf )

|

becomes

q̃f = L
|
qf where L =

 
1 �a

0 1

!
. (2.10)

The ambiguity in charge assignments is a direct consequence of the freedom in defining the
U(1) subgroups for a symmetry group with several Abelian factors. A familiar example is
the QCD, which, ignoring the anomalies, has a global U(1)V ⇥ U(1)A or, equivalently, a
U(1)L ⇥ U(1)R symmetry.

2As a point of reference, this ratio is 6 for the SM hypercharge.
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[273 inequivalent solutions]

[21 inequivalent solutions]
 allowed => Ye
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(XH = 0)

eg.  LQ: S3 XL2
≠ {XL1,3

, −3Xq}

[252 inequivalent solutions]
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• The ACC conditions are satisfied provided

The  atlasU(1)X

Third-family-quark

• The “2+1” charge assignment

AG, Soreq, Stangl, Thomsen, Zupan; 2107.07518

The universal quark charge is �9Xq = XL1 + XL2 + XL3 , while the right-handed neutrino
charges are XN1 , XN2 and XN3 . The 18 solutions that have

bE1 = �bE2/2 = bE3 , (2.27)

are listed in Table 1 (up to flavor permutations). The remaining three solutions are

{XL1,2,3} ={�7, 0, 7}, {bE1,2,3} = {�1, 3, �2}, {XN1,2,3} = {�5, �3, 8}, (2.28)
{XL1,2,3} ={�5, �3, 8}, {bE1,2,3} = {�2, 3, �1}, {XN1,2,3} = {�6, �4, 10}, (2.29)
{XL1,2,3} ={�5, 6, 8}, {bE1,2,3} = {1, �3, 2}, {XN1,2,3} = {0, 3, 6}. (2.30)

These solutions are particularly interesting as they facilitate models in which the muon mass
and the (g � 2)µ are both generated at one-loop order (see Section 4).

2.3 Third-family-quark U(1)X

One can relax the assumption of universal U(1)X charges for quarks, Eq. (2.12), and instead
allow for family-dependent quark charges. The quark Yukawa matrices Y

ij
u and Y

ij

d
are

then no longer arbitrary 3 ⇥ 3 complex matrices but, rather, have a texture restricted by
the gauge symmetry. The “2 + 1” quark charge assignment is particularly well-motivated by
phenomenology. In this case, the U(1)X charge of the third quark family differs from that
of the first two families, the latter still taken to be universal:

XQi = XUj = XDk ⌘ Xq12 for all i, j, k = 1, 2, and
XQ3 = XU3 = XD3 ⌘ Xq3 .

(2.31)

The anomaly cancellation conditions (2.2)–(2.7) are identical to the quark flavor-universal
case (Section 2.2) provided that

2Xq12 + Xq3 = 3Xq , (2.32)

where Xq is defined in Eq. (2.12). The quark flavor-universal solutions found in Section 2.2
can, therefore, immediately be extended to the 2 + 1 case. Each flavor-universal solution
generates a one-parameter family of 2 + 1 charge assignments. Xq3 can be taken as a free
parameter, while Xq12 is set to Xq12 = (3Xq � Xq3)/2, with Xq the flavor-universal quark
charge assignment for a given solution listed in Section 2.2. In the phenomenological studies
(Section 3.5), we will focus on the scenario where Xq12 = 0 and Xq3 = 3Xq 6= 0.

The non-Abelian accidental symmetry of the renormalizable Lagrangian without Yukawa
interactions is the SU(2)Q ⇥ SU(2)U ⇥ SU(2)D flavor symmetry, under which the first two
generations transform as doublets, while the third generation is a singlet [118, 119]. As
discussed in the literature [118–120], the minimal set of the symmetry-breaking spurions
capable of explaining the observed quark masses and the CKM mixing matrix consists of a
doublet V ⇠ (2,1,1) and two bidoublets �U ⇠ (2, 2̄,1) and �D ⇠ (2,1, 2̄). For the 2 + 1

charge assignments, the bidoublet spurions are allowed in the Yukawa interactions already
at the dimension-4 level. The doublet V is generated only at the dimension-5 level,

L �
x

u

i

⇤
QiH̃�U3 +

x
d

i

⇤
QiH�D3 + H.c. , (2.33)
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The universal quark charge is �9Xq = XL1 + XL2 + XL3 , while the right-handed neutrino
charges are XN1 , XN2 and XN3 . The 18 solutions that have

bE1 = �bE2/2 = bE3 , (2.27)

are listed in Table 1 (up to flavor permutations). The remaining three solutions are

{XL1,2,3} ={�7, 0, 7}, {bE1,2,3} = {�1, 3, �2}, {XN1,2,3} = {�5, �3, 8}, (2.28)
{XL1,2,3} ={�5, �3, 8}, {bE1,2,3} = {�2, 3, �1}, {XN1,2,3} = {�6, �4, 10}, (2.29)
{XL1,2,3} ={�5, 6, 8}, {bE1,2,3} = {1, �3, 2}, {XN1,2,3} = {0, 3, 6}. (2.30)

These solutions are particularly interesting as they facilitate models in which the muon mass
and the (g � 2)µ are both generated at one-loop order (see Section 4).

2.3 Third-family-quark U(1)X

One can relax the assumption of universal U(1)X charges for quarks, Eq. (2.12), and instead
allow for family-dependent quark charges. The quark Yukawa matrices Y

ij
u and Y

ij

d
are

then no longer arbitrary 3 ⇥ 3 complex matrices but, rather, have a texture restricted by
the gauge symmetry. The “2 + 1” quark charge assignment is particularly well-motivated by
phenomenology. In this case, the U(1)X charge of the third quark family differs from that
of the first two families, the latter still taken to be universal:

XQi = XUj = XDk ⌘ Xq12 for all i, j, k = 1, 2, and
XQ3 = XU3 = XD3 ⌘ Xq3 .

(2.31)

The anomaly cancellation conditions (2.2)–(2.7) are identical to the quark flavor-universal
case (Section 2.2) provided that

2Xq12 + Xq3 = 3Xq , (2.32)

where Xq is defined in Eq. (2.12). The quark flavor-universal solutions found in Section 2.2
can, therefore, immediately be extended to the 2 + 1 case. Each flavor-universal solution
generates a one-parameter family of 2 + 1 charge assignments. Xq3 can be taken as a free
parameter, while Xq12 is set to Xq12 = (3Xq � Xq3)/2, with Xq the flavor-universal quark
charge assignment for a given solution listed in Section 2.2. In the phenomenological studies
(Section 3.5), we will focus on the scenario where Xq12 = 0 and Xq3 = 3Xq 6= 0.

The non-Abelian accidental symmetry of the renormalizable Lagrangian without Yukawa
interactions is the SU(2)Q ⇥ SU(2)U ⇥ SU(2)D flavor symmetry, under which the first two
generations transform as doublets, while the third generation is a singlet [118, 119]. As
discussed in the literature [118–120], the minimal set of the symmetry-breaking spurions
capable of explaining the observed quark masses and the CKM mixing matrix consists of a
doublet V ⇠ (2,1,1) and two bidoublets �U ⇠ (2, 2̄,1) and �D ⇠ (2,1, 2̄). For the 2 + 1

charge assignments, the bidoublet spurions are allowed in the Yukawa interactions already
at the dimension-4 level. The doublet V is generated only at the dimension-5 level,

L �
x

u

i

⇤
QiH̃�U3 +

x
d

i

⇤
QiH�D3 + H.c. , (2.33)
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*The quark flavor-universal 
solutions can immediately be 
extended to the 2 + 1 case. 

• The CKM elements  at dim-5:(Vtd , Vts)

The universal quark charge is �9Xq = XL1 + XL2 + XL3 , while the right-handed neutrino
charges are XN1 , XN2 and XN3 . The 18 solutions that have

bE1 = �bE2/2 = bE3 , (2.27)

are listed in Table 1 (up to flavor permutations). The remaining three solutions are

{XL1,2,3} ={�7, 0, 7}, {bE1,2,3} = {�1, 3, �2}, {XN1,2,3} = {�5, �3, 8}, (2.28)
{XL1,2,3} ={�5, �3, 8}, {bE1,2,3} = {�2, 3, �1}, {XN1,2,3} = {�6, �4, 10}, (2.29)
{XL1,2,3} ={�5, 6, 8}, {bE1,2,3} = {1, �3, 2}, {XN1,2,3} = {0, 3, 6}. (2.30)

These solutions are particularly interesting as they facilitate models in which the muon mass
and the (g � 2)µ are both generated at one-loop order (see Section 4).

2.3 Third-family-quark U(1)X

One can relax the assumption of universal U(1)X charges for quarks, Eq. (2.12), and instead
allow for family-dependent quark charges. The quark Yukawa matrices Y

ij
u and Y

ij

d
are

then no longer arbitrary 3 ⇥ 3 complex matrices but, rather, have a texture restricted by
the gauge symmetry. The “2 + 1” quark charge assignment is particularly well-motivated by
phenomenology. In this case, the U(1)X charge of the third quark family differs from that
of the first two families, the latter still taken to be universal:

XQi = XUj = XDk ⌘ Xq12 for all i, j, k = 1, 2, and
XQ3 = XU3 = XD3 ⌘ Xq3 .

(2.31)

The anomaly cancellation conditions (2.2)–(2.7) are identical to the quark flavor-universal
case (Section 2.2) provided that

2Xq12 + Xq3 = 3Xq , (2.32)

where Xq is defined in Eq. (2.12). The quark flavor-universal solutions found in Section 2.2
can, therefore, immediately be extended to the 2 + 1 case. Each flavor-universal solution
generates a one-parameter family of 2 + 1 charge assignments. Xq3 can be taken as a free
parameter, while Xq12 is set to Xq12 = (3Xq � Xq3)/2, with Xq the flavor-universal quark
charge assignment for a given solution listed in Section 2.2. In the phenomenological studies
(Section 3.5), we will focus on the scenario where Xq12 = 0 and Xq3 = 3Xq 6= 0.

The non-Abelian accidental symmetry of the renormalizable Lagrangian without Yukawa
interactions is the SU(2)Q ⇥ SU(2)U ⇥ SU(2)D flavor symmetry, under which the first two
generations transform as doublets, while the third generation is a singlet [118, 119]. As
discussed in the literature [118–120], the minimal set of the symmetry-breaking spurions
capable of explaining the observed quark masses and the CKM mixing matrix consists of a
doublet V ⇠ (2,1,1) and two bidoublets �U ⇠ (2, 2̄,1) and �D ⇠ (2,1, 2̄). For the 2 + 1

charge assignments, the bidoublet spurions are allowed in the Yukawa interactions already
at the dimension-4 level. The doublet V is generated only at the dimension-5 level,

L �
x

u

i

⇤
QiH̃�U3 +

x
d

i

⇤
QiH�D3 + H.c. , (2.33)
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• The muoquark conditions slightly change: 

(XH = 0)

eg.  LQ:S3

Let us consider as an illustration a scalar leptoquark S3 ⌘ (3,3, 1/3, XS3). Assuming
Xq3 6= 0 and Xq12 = 0, we further require:

i) the interaction Q3L2S3 is allowed,

ii) Q3L1,3S3, Q1,2L1,3S3, and Q1,2,3Q1,2,3S
†
3 are forbidden.

For this to be true, the following set of conditions needs to be satisfied

XL2 6= {XL1,3 , XL1,3 � Xq3 , �Xq3 , �2Xq3 , �3Xq3} . (2.34)

These criteria are met by 171 inequivalent sets of XFi charges in the range [�10, 10] out of
which 158 belong to the vector category (cf. Eq. (2.15)) and 13 are in the chiral category.
We will explore the phenomenology of the sub-GeV Xµ vector boson of the gauged U(1)X

with:

Xq12 = 0 , Xq3 = �3 ,

XL1,2,3 = XE1,2,3 = XN1,2,3 = {0, 1, 8}, {0, 2, 7}, {0, 4, 5}, or {0, �1, 10}. (2.35)

These benchmarks satisfy Eq. (2.34) and do not couple X to electrons or valence quarks.
The S3 muoquark at tree-level contributes to b ! sµµ decays and can fit the data well,

see e.g. Ref. [1]. The coupling to the strange quark is generated in a way similar to the
CKM matrix, i.e., by a dimension-5 operator

L �
z

u

i

⇤
Q

C

i L2S3�
†

+ H.c. , (2.36)

where i = 1, 2. This operator is allowed by gauge symmetry despite the U(1)X charges
already being fixed by Eqs. (2.33) and (2.34). The simplest way to generate this operator
without spoiling the down-alignment of Xµ interactions is to introduce a vector-like lepton
� ⇠ (1,2, �

1
2 , �XS3). More precisely, the interactions Q

C

1,2�LS3 and �̄R�
†
L2 generate the

operator in Eq. (2.36) when the � field gets integrated out at tree-level.

3 Light Xµ phenomenology

When the U(1)X gauge boson Xµ is light, it can give the dominant new physics contribution
to (g � 2)µ and potentially resolve the discrepancy between the measurements and the SM
prediction, see e.g. [122]. In this section we show that the (g � 2)µ anomaly can indeed be
explained, without violating other experimental constraints, by a sub-GeV vector boson Xµ

in a broad class of U(1)X gauge models. The U(1)X models that we consider all admit the
muoquark solution of the rare B decay anomalies in the R

K(⇤) ratios and b ! sµµ angular
distributions and branching ratios.

The model independent discussion in Sections 3.1, 3.2, and 3.3 is limited to the flavor
conserving Xµ couplings applicable for the U(1)X gauge models. Section 3.4 contains also a
short discussion of challenges facing a light vector boson that would be flavor violating [123].
The main goal of Section 3.4 is to show that a single light Xµ cannot simultaneously resolve
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[171 inequivalent sol.]

Gravity2
⇥ U(1)X :

3X

i=1

(6XQi + 2XLi � 3XUi � 3XDi � XEi � XNi) = 0 , (2.5)

U(1)Y ⇥ U(1)
2
X :

3X

i=1

(X
2
Qi

� X
2
Li

� 2X
2
Ui

+ X
2
Di

+ X
2
Ei

) = 0 , (2.6)

U(1)
3
X :

3X

i=1

(6X
3
Qi

+ 2X
3
Li

� 3X
3
Ui

� 3X
3
Di

� X
3
Ei

� X
3
Ni

) = 0 . (2.7)

We consider only rational solutions motivated by the unification scenario, i.e., embedding the
U(1)X into a simple Lie group at high-energies. We can work with integer charges without
loss of generality, since for any set of rational charges {pFi/qFi}, there is an equivalent
set of integer charges obtained by rescaling the gauge coupling gX with the least common
denominator. Any set of integer charges {XFi} satisfying the anomaly conditions (2.2)–(2.7)
can be used to generate up to (3!)

6 inequivalent solutions (and a correspondingly smaller set,
if some of the charges for different families coincide), by permuting the flavor specific charges
within each species. Below, we list the solutions to the Diophantine equations (2.2)–(2.7)
up to this freedom of family permutations.

Still, this leaves us with infinitely many integer solutions of the anomaly cancellation
conditions. For concreteness, we limit the maximal ratio of the largest and the smallest
nonzero charge magnitudes to be  10.2 In the following we then give an exhaustive set of
inequivalent integer solutions of Eqs. (2.2)–(2.7) with

� 10  XFi  10 for every Fi in Eq. (2.1), (2.8)

building on the work of Ref. [82], while imposing further constraints to produce viable
muoquark models.

2.2 Quark flavor universal U(1)X

The symmetry-breaking scalar fields are

H = (1,2,
1

2
, XH) , � = (1,1, 0, X�) , (2.9)

where H is the SM Higgs (with U(1)X charge XH) and � is the SM singlet responsible
for the breaking of U(1)X . Shifting the U(1)X charge assignments for all fields f by a
universal multiple of the hypercharge, Xf ! Xf � aYf , gives a physically equivalent theory,
cf. Appendix A.1. In particular, after a linear invertible field transformation qf = (Yf , Xf )

|

becomes

q̃f = L
|
qf where L =

 
1 �a

0 1

!
. (2.10)

The ambiguity in charge assignments is a direct consequence of the freedom in defining the
U(1) subgroups for a symmetry group with several Abelian factors. A familiar example is
the QCD, which, ignoring the anomalies, has a global U(1)V ⇥ U(1)A or, equivalently, a
U(1)L ⇥ U(1)R symmetry.

2As a point of reference, this ratio is 6 for the SM hypercharge.
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The universal quark charge is �9Xq = XL1 + XL2 + XL3 , while the right-handed neutrino
charges are XN1 , XN2 and XN3 . The 18 solutions that have

bE1 = �bE2/2 = bE3 , (2.27)

are listed in Table 1 (up to flavor permutations). The remaining three solutions are

{XL1,2,3} ={�7, 0, 7}, {bE1,2,3} = {�1, 3, �2}, {XN1,2,3} = {�5, �3, 8}, (2.28)
{XL1,2,3} ={�5, �3, 8}, {bE1,2,3} = {�2, 3, �1}, {XN1,2,3} = {�6, �4, 10}, (2.29)
{XL1,2,3} ={�5, 6, 8}, {bE1,2,3} = {1, �3, 2}, {XN1,2,3} = {0, 3, 6}. (2.30)

These solutions are particularly interesting as they facilitate models in which the muon mass
and the (g � 2)µ are both generated at one-loop order (see Section 4).

2.3 Third-family-quark U(1)X

One can relax the assumption of universal U(1)X charges for quarks, Eq. (2.12), and instead
allow for family-dependent quark charges. The quark Yukawa matrices Y

ij
u and Y

ij

d
are

then no longer arbitrary 3 ⇥ 3 complex matrices but, rather, have a texture restricted by
the gauge symmetry. The “2 + 1” quark charge assignment is particularly well-motivated by
phenomenology. In this case, the U(1)X charge of the third quark family differs from that
of the first two families, the latter still taken to be universal:

XQi = XUj = XDk ⌘ Xq12 for all i, j, k = 1, 2, and
XQ3 = XU3 = XD3 ⌘ Xq3 .

(2.31)

The anomaly cancellation conditions (2.2)–(2.7) are identical to the quark flavor-universal
case (Section 2.2) provided that

2Xq12 + Xq3 = 3Xq , (2.32)

where Xq is defined in Eq. (2.12). The quark flavor-universal solutions found in Section 2.2
can, therefore, immediately be extended to the 2 + 1 case. Each flavor-universal solution
generates a one-parameter family of 2 + 1 charge assignments. Xq3 can be taken as a free
parameter, while Xq12 is set to Xq12 = (3Xq � Xq3)/2, with Xq the flavor-universal quark
charge assignment for a given solution listed in Section 2.2. In the phenomenological studies
(Section 3.5), we will focus on the scenario where Xq12 = 0 and Xq3 = 3Xq 6= 0.

The non-Abelian accidental symmetry of the renormalizable Lagrangian without Yukawa
interactions is the SU(2)Q ⇥ SU(2)U ⇥ SU(2)D flavor symmetry, under which the first two
generations transform as doublets, while the third generation is a singlet [118, 119]. As
discussed in the literature [118–120], the minimal set of the symmetry-breaking spurions
capable of explaining the observed quark masses and the CKM mixing matrix consists of a
doublet V ⇠ (2,1,1) and two bidoublets �U ⇠ (2, 2̄,1) and �D ⇠ (2,1, 2̄). For the 2 + 1

charge assignments, the bidoublet spurions are allowed in the Yukawa interactions already
at the dimension-4 level. The doublet V is generated only at the dimension-5 level,

L �
x

u

i

⇤
QiH̃�U3 +

x
d

i

⇤
QiH�D3 + H.c. , (2.33)
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Most studied case:

Gauged Lμ − Lτ
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Figure 9. The X boson decay branching ratios in Lµ � L⌧ model (left) and B � 3Lµ model (right).

The running of the hypercharge coupling is given by

dg1

dt
=

sBB

48⇡2
g
3
1 + O

�
gX"

�
=) g1(t) =

p
24⇡2/sBB
p

T � t
, T =

24⇡
2

sBB g
2
1(0)

, (A.13)

with g1(0) is the value of hypercharge coupling constant at scale µ0. The running of " is
driven by the hypercharge and integrates to

" =

p
T"0 + bt
p

T � t
, where b =

g1sBXp
24⇡2sBB

. (A.14)

For RG running from the leptoquark mass scale, µ0 = 3 TeV, to the Planck mass, MPl '

1.2 · 10
19

GeV, we have T ' 85, while tPl = 36. To a reasonable approximation, we have

"(MPl) � "(µ0) ' 0.32"(µ0) + 0.072sBX gX . (A.15)

B The X boson phenomenology

B.1 Decay channels

In Fig. 9 we plot for clarity the branching ratios of the Xµ boson for several final states as
a function of the Xµ mass mX derived with DarkCast. The two benchmark models are
presented in Section 3.5.1 and Section 3.5.2.

B.2 R
K(⇤) from a light Xµ vector boson

Here we extend the discussion given in Section 3.4 regarding the predictions for R
K(⇤) in

the presence of a light vector boson Xµ . The R
K(⇤) observables are measured in bins of the

invariant dilepton mass squared q
2, and are given in terms of the q

2-differential branching
ratios by

R
[q2min, q

2
max]

K(⇤) =

R
q
2
max

q
2
min

dq
2 dBR(B!K

(⇤)
µ
+

µ
�)

dq2

R
q2max
q
2
min

dq2 dBR(B!K(⇤)e+e�)
dq2

. (B.1)
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B The X boson phenomenology

B.1 Decay channels

In Fig. 9 we plot for clarity the branching ratios of the Xµ boson for several final states as
a function of the Xµ mass mX derived with DarkCast. The two benchmark models are
presented in Section 3.5.1 and Section 3.5.2.

B.2 R
K(⇤) from a light Xµ vector boson

Here we extend the discussion given in Section 3.4 regarding the predictions for R
K(⇤) in

the presence of a light vector boson Xµ . The R
K(⇤) observables are measured in bins of the

invariant dilepton mass squared q
2, and are given in terms of the q

2-differential branching
ratios by

R
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dq2

R
q2max
q
2
min

dq2 dBR(B!K(⇤)e+e�)
dq2

. (B.1)
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Figure 6. Parameter space for the light X solution to the (g � 2)µ anomaly in the L̃µ�⌧ model.
The shaded regions are excluded by various experiments, while the region between the black lines is
preferred by (g � 2)µ.

Finally, the model has purely axial couplings to electrons and no couplings to quarks such
that NSI bounds are completely avoided. Fig. 6 shows that the Borexino and CCFR bounds
are still strong enough to exclude most of the parameter space relevant for (g � 2)µ except
for a small window around 100 MeV, assuming that the kinetic mixing vanishes in the UV.
The bounds do not change significantly for other reasonable values of ", for instance even
for values as large as " = ±gX/10. In Fig. 6 we do not show the collider bounds. We expect
these to be qualitatively similar to the collider bounds for the Lµ � L⌧ model, cf. Fig. 2.
However, the DarkCast code, which we used to derive the collider bounds, only has vector
couplings implemented at the moment. We therefore defer the complete phenomenological
study of the L̃µ�⌧ model to future work.

Finally, it would be interesting to relax the chiral model search criteria beyond |XF |  10.
We anticipate that this would generate additional feasible models with axial currents that
are further suppressed and also have a larger muon-to-electron charge ratio, further relaxing
the experimental bounds. Of course, this is just another way to approach the limit of the
Lµ � L⌧ model.

4 Muon mass and (g � 2)µ at one loop

The observed smallness of Yukawa couplings can be explained in models in which fermion
masses are generated from radiative corrections [181, 182]. Here we focus on radiatively
generated muon mass. Since both the muon mass and the muon anomalous magnetic
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For the former, we reuse the results of Ref. [178] where the operator product expansion,
treating charm quark as heavy, was used to obtain the meson mixing bounds on flavored
light vector mediators. The D � D̄ mixing measurements translate to a bound mX &
60 MeV(gXXq3/10

�4
), if the NP couplings are real, and mX & 360 MeV(gXXq3/10

�4
) for a

NP contribution with the maximal weak phase. To be conservative, we assume that the NP
couplings are real. In particular, the off-diagonal couplings are only in the Xµ couplings
to left-handed up quarks, and these are taken to be equal to Xq3gX |V

⇤
ub

Vcb|. We show this
bound in Fig. 5 as the dark blue shaded region.

Potentially even more sensitive is the D ! ⇡X decay, where X decays to neutrinos,
resulting in the D ! ⇡ + Emiss signature. Unfortunately, there is no dedicated experimental
search for this signature yet. To indicate the potential experimental reach we can use the
recast of the CLEO D ! µ⌫ search [179] that was reinterpreted in Ref. [180] as the bound on
D ! ⇡a decays for a massless invisible pseudoscalar a, giving Br(D

+
! ⇡

+
a) < 8 ·10

�6. We
expect this recast to be valid also for Xµ masses of up to a few hundred MeV, while for heavier
masses the recast should be repeated, which we do not attempt here. Using the expressions
for decay branching ratios in [178] we then obtain the bound mX & 70MeV(gXXq3/10

�5
),

assuming 100% branching ratio to neutrinos, which is valid in our benchmark up to the
muon threshold, mX < 2mµ. In Fig. 5 the bound is indicated with a light blue dashed line.
To obtain the complete sensitivity of rare meson decay bounds other decay channels such as
D ! ⇡µ

+
µ

�, D ! ⇢µ
+
µ

� should be considered (as well as D ! ⇢Emiss once experimental
searches are performed), which goes beyond the scope of the present exploratory study.

Even so, Fig. 5 clearly demonstrates that the D meson bounds are strong enough to
completely rule out the light Xµ solution to (g�2)µ in this model. The only viable models of
this kind would be the ones with |XL2,E2 | � |Xq3 |, which would suppress the NP couplings
to the quark sector relative to the coupling to the SM leptons. This could be achieved
by modifying the present third quark family benchmark and replacing it with a linear
combination of these third-family charge assignments and the U(1)µ�⌧ charge assignments
(weighting more heavily toward the latter). Clearly, one can approximate arbitrarily well
the physics of U(1)µ�⌧ by allowing for sufficiently large charges of the latter group.

3.5.5 Chiral model: Gauged L̃µ�⌧

We now entertain a more exotic option for the U(1)X group from among the models of
Sec. 2.2.2 with chiral charge assignments.
L̃µ�⌧ model :

(XL1 , XL2 , XL3) = (�1, 7, �6), (XE1 , XE2 , XE3) = (1, 6, �7),

(XN1 , XN2 , XN3) = (�7, �2, 9), XQi,Di,Ui = 0. (3.15)

The model has a large vectorial coupling to muons and only a small axial component. This
maximizes the NP contributions to the (g � 2)µ with the right sign to explain the anomaly.
The model also maintains a large ratio between the muon and electron charges, without
which there is little hope of evading the Borexino bound (that the Borexino bound is relevant
even for small induced couplings to electrons we saw already in the case of the Lµ�⌧ model).
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• Axial coupling to electrons: 
 No NSI bounds⟹



Probing the Z 0 Parameter Space

Neutrino Tridents

Bs mixing

(g � 2)µ

⌫e scattering

Z ! ``

Z ! 4µ

e+e� ! 4µ

WA, Gori, Martin-Albo, Sousa, Wallbank 1902.06765

0.001 0.010 0.100 1 10 100 1000

0.001

0.010

0.100

1

mZ ' (GeV)

g'

B
o
re

x
in

o

BaBar

B
B

N

LHC

LEP

CCFR

ca
n

ex
p
la

in
B

an
o
m

al
ie

s

B
s

m
ix

in
g

(g-2)�

DUNE

Wolfgang Altmannshofer (UCSC) New results on rare B decays and implications March 29, 2021 13 / 14

My Favorite Model

Z 0 based on gauging Lµ � L⌧ (He, Joshi, Lew, Volkas PRD 43, 22-24)

with effective flavor violating couplings to quarks
WA, Gori, Pospelov, Yavin 1403.1269; WA, Yavin 1508.07009

µ+

µ−

bL

sL

Q
Z ′

⟨φ⟩

⟨φ⟩

g′
g′YQbY ∗

Qs⟨φ⟩
2

2m2
Q

predicted Lepton
Universality Violation

in rare B decays!

Q: heavy vectorlike fermions with mass ⇠ 1 � 10 TeV
�: scalar that breaks Lµ � L⌧

Wolfgang Altmannshofer (UCSC) New results on rare B decays and implications March 29, 2021 12 / 14

• Simultaneous explanation 
of  not possible(g − 2)μ

Z0: Constraints from Bs-B̄s mixing

Z0

sL

bL

µ

µ

!

Z0

sL

bL

sL

bL

⇠
gbs gµµ

m�
Z0

⇠
�

(�6TeV)� ⇠
g�
bs

m�
Z0

.

��� M��
MSM

��
� �

���
.
��%

(���TeV)������
M��
MSM
��

��

�����⇡��%

+

gµµ

mZ0
& �

�.�TeV
Ways around:
I imaginary part of gbs ! constraints from CP violating observables
I Z0 coupling to (s̄�µPRb) ! constraint from RK ⇡ RK⇤

I . . .

Peter Stangl (University of Bern) ITP Seminar, �6 April ���� ��/��

• Constraints: 

1. Neutral meson mixing: 

2. Neutrino trident production νγ → νμμ
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Fig. 5.1: Reach in new physics scale of present and future facilities, from generic dimension
six operators. Colour coding of observables is: green for mesons, blue for leptons, yellow for
EDMs, red for Higgs flavoured couplings and purple for the top quark. The grey columns illus-
trate the reach of direct flavour-blind searches and EW precision measurements. The operator
coefficients are taken to be either ⇠ 1 (plain coloured columns) or suppressed by MFV factors
(hatch filled surfaces). Light (dark) colours correspond to present data (mid-term prospects,
including HL-LHC, Belle II, MEG II, Mu3e, Mu2e, COMET, ACME, PIK and SNS).

compared with the reach of direct high-energy searches and EW precision tests (in grey), il-
lustrated by using flavour-blind operators that have the optimal reach [258]: the gluon-Higgs
operator and the oblique parameters for EW precision tests, respectively. The shown effective
energy reach of flavour experiments do have several caveats. First of all, in many realistic the-
ories either the coupling constants are smaller than unity and/or the symmetries suppress the
sizes of the coefficients. This effect is illustrated by including in the quark sector the present
bounds in tree level NP with Minimal Flavour Violation (MFV) pattern of couplings (hatch filled
areas) [259–262]. Furthermore, there could be cancellations among several higher-dimension
operators. In addition, for theories in which the new physics contributes as an insertion inside a
one-loop diagram mediated by SM particles, all the shown scales should be further reduced by
extra GIM-mass suppressions and/or a factor a/4p ⇠ 10�3 (where a denotes the generic gauge
structure constants).

Finally and importantly, the new physics scale behind the flavour paradigm may differ
from the electroweak new physics scale. Despite these caveats, Fig. 5.1 does illustrate the
unique power of flavour physics to probe NP. The next generation of precision particle physics
experiments will probe significantly higher effective NP scales, as discussed in more detail
below.



Neutrino masses

• The  imposes a flavor structure for .U(1)B−3Lμ
yν, MR, yΦ

• The Majorana mass matrix is entirely populated except  entry.(2,2)

• The Dirac mass matrix splits into 2x2  block and a diagonal .eτ μ

• There is enough parametric freedom to accommodate for :

5

FIG. 2. The RG flow of a selection of couplings from the
benchmark point to the Planck scale. All couplings were in-
cluded in the running, and none of them develops a Landau
pole in this range.

Additionally, the S1 muoquark generates a non-
multiplicative radiative corrections to the muon Yukawa
coupling [80, 107, 108]:

�yµ = �
3

(4⇡)2

✓
1 + ln

µ
2
M

M
2
1

◆
⌘
1L⇤
i

y
ij

u
⌘
1R
j

. (7)

For the part of parameter space with large enough cou-
plings to explain the (g � 2)µ, a tuning argument again
favors models with smaller masses. In our best fit point
the change in yµ is roughly 50%. The same muoquark
loop that gives the threshold correction to yµ also gives
rise to a significant running of this Yukawa as shown in
Fig. 2. This is yet another independent argument in favor
of lighter muoquarks potentially accessible at high-pT .

D. Neutrino masses and proton decay

Coming back to the neutrino sector outlined in the
last line of the model Lagrangian (2), the U(1)B�3Lµ

gauge symmetry imposes a flavor structure for y⌫ , MR

and y�. Notably, y⌫ splits into a 2⇥2 electron–tau block
and a diagonal muon entry. When � receives a VEV,
the Majorana mass matrix is entirely populated except
for the (2,2) entry. This structure has enough paramet-
ric freedom to explain the observed neutrino oscillation
data [109], the limit on the sum of neutrino masses from
Planck [110], and the absence of neutrinoless double beta
decay [111]. Ref. [76] performed a careful analysis of a

specific limit when the y
13,31
⌫

and y
23
� are set to zero, ar-

riving at the two-zero minor structure of type DR
1 . This

limit perfectly accommodates neutrino oscillations data,
predicting

P
i
m⌫i

comfortably below the present limit
and no neutrinoless beta decay. The firm predictions of
the DR

1 can be alerted in our case by nonzero y
13,31
⌫

and
y
23
� parameters.
The type-I seesaw formula for the masses of the active

neutrinos,

m⌫ ' �v
2
y⌫

�
MR + y�h�i

��1
y
T
⌫

, (8)

suggests that in our chosen benchmark the Dirac Yukawa
is in the same ballpark as the electron Yukawa, O(10�6).
The S1 muoquark, contributing to (g � 2)µ would ra-
diatively correct the y

22
⌫

with the bottom quark in the
loop [112]. The ⌘̃

1R
3 coupling is an input parameter, how-

ever, if it is of the same order as the ⌘
1R
3 coupling, it

would contribute comparably to the tree-level. Hence,
no tuning is introduced here.

Finally, the Lagrangian in Eq. (2) respects baryon
number and keeps the proton stable. However, the ab-
sence of B violation for a TeV-scale leptoquark model
has to be required also for the leading irrelevant oper-
ators arising at dimension-5 [113, 114]. Quantum grav-
ity is expected to break global charges [115], and even
if the dimension-5 operator under consideration is sup-
pressed by the Planck scale, it is not enough to evade
the stringent bounds on the proton lifetime. This seems
to be a quite generic issue often neglected in the litera-
ture, with the notable exception of the Pati–Salam gauge
leptoquark, see e.g. [116–129].

The U(1)B�3Lµ
gauge symmetry, however, with the

available field content ensure that B number is conserved
also at the dimension-5 e↵ective Lagrangian.3 The lead-
ing breaking is expected at dimension 6 similarly to the
SM. It is a nontrivial fact that this is compatible with
the minimal realization of neutrino masses. This is, for
instance, not the case for U(1)Lµ�L⌧

symmetry where
the minimal neutrino sector [71] allows for a coupling
1/MPl q

c

LS
†
3�

†
qL, which, together with the q

c

L`LS3 needed
for the anomaly, leads to proton decay in gross violation
of the experiment. We estimate that such leptoquark
has to be several orders of magnitude heavier to respect
the proton lifetime bound, or, equivalently, the couplings
should be smaller. In either case, the explanation of the
anomaly is gone. Going beyond the minimal neutrino
mass realizations in U(1)Lµ�L⌧

, even more involved con-
structions proposed in the literature share this problem,
see e.g. [130–133].

3 The only way to build color singlets with non-vanishing baryon
number at this order is with fields SSS, qSS, or qqS. These
combinations have U(1)B�3Lµ

charge ±8, ±5, and ±2, respec-
tively. It is easy to verify that they cannot be completed to a
gauge invariant dimension-5 operator with the available matter
fields.

• The minimal type-I seesaw mechanism

• Not the case for all . Example is , see 1907.04042.U(1)Xμ
U(1)Lμ−Lτ

- Neutrino oscillations data,
- The Planck limit on the sum of neutrino masses,
- The absence of neutrinoless double beta decay.
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