CP-Violating Neutrino Non-Standard Interactions in Long-Baseline-Accelerator Data

Julia Gehrlein

Brookhaven National Laboratory

Anomalies 2021

November 2021

Based on 2008.01110, Phys. Rev. Lett. 126 (2021) no.5, 051801 in collaboration with Peter B. Denton and Rebekah Pestes

Julia Gehrlein (BNL)

CPV NSI at LBL

Neutrino oscillations: strong evidence for BSM physics

Neutrino oscillations

- Neutrino oscillations: strong evidence for BSM physics
- flavor eigenstates (of weak interaction) and mass eigenstates (of free particle Hamiltonian) not aligned for neutrinos

$$\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix}$$

 U_{PMNS} : relates flavor and mass states

parametrized by 4 parameters (3 angles, at least 1 phase)

 \Rightarrow observation of neutrino oscillation introduced more parameters to the SM

Julia Gehrlein	(BNL)
----------------	-------

 standard parametrization for PMNS matrix as a series of three rotations

$$U_{PMNS} = U_{23}(\theta_{23})U_{13}(\theta_{13},\delta)U_{12}(\theta_{12})\text{diag}(e^{i\alpha_1/2}, e^{i\alpha_2/2}, 1)$$

- diag(e^{iα1/2}, e^{iα2/2}, 1) only physical for Majorana neutrinos, oscillation experiments are not sensitive to these phases
 - \rightarrow not going to talk about them further

standard parametrization for PMNS matrix as a series of three rotations

$$U_{PMNS} = U_{23}(\theta_{23})U_{13}(\theta_{13},\delta)U_{12}(\theta_{12})$$

\Rightarrow want to measure these new parameters!

Neutrino oscillations

produce neutrino of flavor α with energy *E* probability to detect neutrino with flavor β at distance *L* is $P(\nu_{\alpha} \rightarrow \nu_{\beta}) = \sin^2 2\theta \sin^2(\Delta m_{ij}^2 L/4E), \ \Delta m_{ij}^2 = m_i^2 - m_j^2$

in a 2-flavor approximation

many experiments have measured the angles and mass splittings
 impressive agreement between experiments

[nuFit v5.0]

- all three angles non-zero
- mixing angles are large!

Neutrino oscillations

- all three angles non-zero
- mixing angles are large!
 surprising if compared to small quark mixing

Neutrino oscillations

• mass splittings: $|\Delta m_{32}^2| = 2.5 \cdot 10^{-3} \text{ eV}^2$, $\Delta m_{21}^2 = 7.4 \cdot 10^{-5} \text{ eV}^2$

mass ordering unknown

- ▶ all three mixing angles are non-zero \rightarrow possibility for CPV
- currently least known parameter is δ which governs CPV in lepton sector
- want to measure $\delta!$

- weak interaction: CP maximally violated [Cronin, Fitch '64]
- ▶ strong interaction: no observed EDM \rightarrow CP conserved (?) (\rightarrow strong CP problem)

J

CPV in mass matrices quantified via basis invariant

 $J_{CP} = \sin\theta_{13}\cos^2\theta_{13}\sin\theta_{12}\cos\theta_{12}\sin\theta_{23}\cos\theta_{23}\sin\delta$

$$_{CP}^{max}=1/(6\sqrt{3})pprox0.096$$
 [Jarlskog '85]

- quark mixing matrix: non-zero δ_{CKM} but CPV is small $|J_{CKM}|/J_{CP}^{max} = 3 \cdot 10^{-5}$
- ▶ is CP violated in the lepton sector? $|J_{PMNS}|/J_{CP}^{max} < 0.34$

How to measure delta?

- ► CPV can only take place in appearance experiments $P(\nu_{\alpha} \rightarrow \nu_{\beta})$
- need a channel where all three flavors play a role (need interference of two contributions to the oscillation probability given by the two mass splittings)
- compare neutrino with anti neutrino oscillation probability

use $P(\nu_{\mu} \rightarrow \nu_{e})$ as oscillation channel!

due to matter effects this channel is also sensitive to the MO

Long baseline experiments: NOvA

- neutrinos from NUMI beam at Fermilab
- E ~ 1.9 GeV, L=810 km
- matter density $\rho = 2.84$ g/cc
- Near (far) detector 0.3 (14) kT liquid scintillator

Long baseline experiments: T2K

- neutrinos from JPARC beam
- E ~ 0.6 GeV, L=295 km
- matter density $\rho = 2.3$ g/cc
- near detector: plastic scintillator, far detector is SuperK

Excitement at Neutrino2020!

[Himmel '20]

[Himmel '20]

- both experiments prefer NO
- ▶ no strong preference for NOvA, generally around $\delta \sim \pi$
- **T2K prefers** $\delta = 3\pi/2$
 - \Rightarrow slight disagreement at $\sim 2\sigma$

Can new physics alleviate this slight discrepancy?

difference between NOvA and T2K is the baselines and the matter density

 \rightarrow neutrinos at NOvA experience stronger matter effects

new physics solution could be related to this difference

introduce new matter interactions for neutrinos

⇒ neutrino non-standard interactions

framework

$$\mathcal{L}_{NSI} = -2\sqrt{2}G_{F}\sum_{lpha,eta,f}\epsilon^{f}_{lphaeta}(\overline{
u}_{lpha}\gamma^{\mu}
u_{eta})(\overline{f}\gamma_{\mu}f)$$

affect oscillations via new matter effect

$$H = \frac{1}{2E} \left[U^{\dagger} M^2 U + a \begin{pmatrix} 1 + \epsilon_{ee} & \epsilon_{e\mu} & \epsilon_{e\tau} \\ \epsilon^*_{e\mu} & \epsilon_{\mu\mu} & \epsilon_{e\tau} \\ \epsilon^*_{e\tau} & \epsilon^*_{\mu\tau} & \epsilon_{\tau\tau} \end{pmatrix} \right]$$

matter potential $a \propto G_F \rho E$

focus on vectorial NSI, flavor changing parameters

6 real parameters:

$$|\epsilon_{e\mu}|\mathbf{e}^{\mathbf{i}\phi_{e\mu}},\;|\epsilon_{e\tau}|\mathbf{e}^{\mathbf{i}\phi_{e\tau}},\;|\epsilon_{\mu\tau}|\mathbf{e}^{\mathbf{i}\phi_{\mu\tau}}$$

consider only one complex parameter at a time

assumption: NSI only affects δ , $\theta_{23}\&\Delta m_{31}^2$ unaffected

$$\begin{split} & \textit{P}(\epsilon = \textit{0}, \delta_{\text{meas}}) = \textit{P}(\epsilon, \delta_{\text{true}}), \\ & \bar{\textit{P}}(\epsilon = \textit{0}, \delta_{\text{meas}}) = \bar{\textit{P}}(\epsilon, \delta_{\text{true}}), \end{split}$$

using approximate expressions for NSI in LBL from [Kikuchi '09]

 \rightarrow estimates for needed magnitude and phase of NSI parameter

estimate for magnitude of NSI parameter

$$|\epsilon_{e\beta}| \approx \frac{s_{12}c_{12}c_{23}\pi\Delta m_{21}^2}{2s_{23}w_{\beta}} \left| \frac{\sin\delta_{\text{T2K}} - \sin\delta_{\text{NOVA}}}{a_{\text{NOVA}} - a_{\text{T2K}}} \right| \approx \begin{cases} 0.22 & \text{for } \beta = \mu\\ 0.24 & \text{for } \beta = \tau \end{cases},$$

with $w_{\beta} = \sin \theta_{23} (\cos \theta_{23})$

• if
$$\sin \delta_{T2K} = \sin \delta_{NOvA} \rightarrow |\epsilon| = 0$$

• if
$$a_{T2K} = a_{NOvA} \rightarrow |\epsilon| \rightarrow \infty$$

estimate for phase of NSI parameter

with $\delta_{NOvA} \neq \delta_{T2K}$ we find that $sin(\delta_{true} + \phi_{e\beta}) \approx 0$ with $a_{NOvA} > a_{T2K}$ and $sin \delta_{T2K} < sin \delta_{NOvA}$:

$$\cos(\delta_{true} + \phi_{e\beta}) \approx = -1$$

$$\delta_{\text{true}} \approx \delta_{\text{T2K}} \rightarrow \phi_{e\beta} \approx \frac{3}{2}\pi$$

NSI: numerical results [Denton, JG, Pestes '20]

Appearance data:

$$n(
u_{e}) = x P(
u_{\mu}
ightarrow
u_{e}) + y P(ar{
u}_{\mu}
ightarrow ar{
u}_{e}) + z \, ,$$

include wrong sign leptons, fit to points on biprobability plot

Appearance data:

$$\textit{n}(
u_{e}) = \textit{xP}(
u_{\mu}
ightarrow
u_{e}) + \textit{yP}(ar{
u}_{\mu}
ightarrow ar{
u}_{e}) + \textit{z} \, ,$$

include wrong sign leptons, fit to points on biprobability plot

Disappearance data:

NOvA: use fit results from [Kelly et al '20]

T2K: use provided likelihoods

use information from vacuum experiments for remaining parameters

• KamLAND:
$$\theta_{12}$$
, $|\Delta m_{21}^2|$ [1303.4667]

SNO: $\Delta m_{21}^2 > 0$

conduct combined analysis of NOvA and T2K using a log likelihood ratio with Poisson statistics

Standard oscillation parameters [Denton, JG, Pestes '20]

combination is more compatible with IO, IO preferred over NO at $\Delta\chi^2 = 2.3$

discrepancy slightly resolved by swapping the mass ordering

- 1. NOvA and T2K both prefer NO over IO
- 2. NOvA+T2K prefers IO over NO
- 3. SK still prefers NO over IO
- 4. NOvA+T2K+SK still prefers NO over IO
- 5. near future reactor experiments provide information in the future

[Kelly et al '20; Esteban et al '20; Denton, JG, Pestes '20]

orange preferred over SM at integer values of $\Delta\chi^2$, dark gray disfavored at $\Delta\chi^2 = 4.61$

[see also Chatterjee, Palazzo '20]

analytical estimates: $|\epsilon_{\alpha\beta}| \approx 0.2, \ \phi_{\alpha\beta} \approx 3\pi/2, \ \delta_{true} \approx 3\pi/2$

MO	NSI	$ \epsilon_{lphaeta} $	$\phi_{lphaeta}/\pi$	δ/π	$\Delta \chi^2$
	$\epsilon_{e\mu}$	0.19	1.50	1.46	4.44
NO	$\epsilon_{e\tau}$	0.28	1.60	1.46	3.65
	$\epsilon_{\mu\tau}$	0.35	0.60	1.83	0.90
	$\epsilon_{e\mu}$	0.04	1.50	1.52	0.23
IO	$\epsilon_{e\tau}$	0.15	1.46	1.59	0.69
	$\epsilon_{\mu\tau}$	0.17	0.14	1.51	1.03

$$\Delta\chi^2 = \chi^2_{\rm SM} - \chi^2_{\rm NSI}$$
 for a fixed MO, $\chi^2_{\rm NO} - \chi^2_{\rm IO} =$ 2.3

Oscillation constraints on NSI parameters

NSI effects grow with energy, distance and matter density

- $\epsilon_{\mu\tau}$ best probed with atmospheric neutrinos
- $\epsilon_{e\mu}, \epsilon_{e\tau}$ best probed with LBL appearance, atmospheric neutrinos
- IceCube: slightly disfavors LBL best fit points, prefers non-zero |ε_{eµ}| at 1σ
- SuperK: only considered real NSI, comparable sensitivity to IceCube

[IceCube '21]

CEvNS at COHERENT: applies to M_{Z'} > 10 MeV, comparable constraints [Denton, JG '20]

- open question of CPV in lepton sector
- slight tension between NOvA and T2K
- swap in mass ordering NO \rightarrow IO can resolve this partially
- tension fully resolved with NSI!
- predict maximal CP violation in PMNS matrix and for new physics
- hint for NSI can be further probed with near-future experiments like T2HK and DUNE

Thank you for your attention!

in general no preference for IO with NSI parameters

orange preferred over SM at integer values of $\Delta\chi^2$, dark gray disfavored at $\Delta\chi^2 = 4.61$

$$\begin{split} & \textit{P}(\epsilon = \textit{0}, \delta_{\text{meas}}) = \textit{P}(\epsilon, \delta_{\text{true}}), \\ & \bar{\textit{P}}(\epsilon = \textit{0}, \delta_{\text{meas}}) = \bar{\textit{P}}(\epsilon, \delta_{\text{true}}), \end{split}$$

$$-s_{12}c_{12}c_{23}\frac{\pi}{2}\Delta m_{21}^{2}\sin\delta + a_{\mathrm{NOvA}}|\epsilon_{e\beta}| \left[w_{\beta}s_{23}\cos(\delta + \phi_{e\beta}) - v_{\beta}c_{23}\frac{\pi}{2}\sin(\delta + \phi_{e\beta}) \right] \approx -s_{12}c_{12}c_{23}\frac{\pi}{2}\Delta m_{21}^{2}\sin\delta_{\mathrm{NOvA}},$$
(A3)
$$s_{12}c_{12}c_{23}\frac{\pi}{2}\Delta m_{21}^{2}\sin\delta - a_{\mathrm{NOvA}}|\epsilon_{e\beta}| \left[w_{\beta}s_{23}\cos(\delta + \phi_{e\beta}) + v_{\beta}c_{23}\frac{\pi}{2}\sin(\delta + \phi_{e\beta}) \right] \approx s_{12}c_{12}c_{23}\frac{\pi}{2}\Delta m_{21}^{2}\sin\delta_{\mathrm{NOvA}},$$
(A4)

CPV NSI at LBL

NSI framework

[Dev et al '19]

$${\cal L}_{NSI}=-2\sqrt{2}G_{F}\sum_{lpha,eta,f}\epsilon^{f}_{lphaeta}(\overline{
u}_{lpha}\gamma^{\mu}
u_{eta})(\overline{f}\gamma_{\mu}f)$$

→ NSI affect neutrino-SM scattering experiments like CEvNS
 NSI effect on weak charge

$$Q^2_{wlpha} \propto \left[N(g^V_n + \epsilon^V_{lpha lpha})
ight]^2 + \sum_{eta
eq lpha} \left[\epsilon^V_{lpha eta} (Z + N)
ight]^2$$

 \rightarrow no sensitivity to complex NSI phase

Backup: Scattering constraints on NSI parameters

- CEvNS detected for the first time in 2016 by COHERENT
- ▶ NSI constraints apply to mediators $M_{Z'}$ > 10 MeV
- constraints derived in [Denton, JG '20] using Feldman-Cousins framework

