The multi-lepton anomalies at the LHC and a candidate for a singlet scalar

Bruce Mellado

The Wits Institute for Collider Particle Physics and iThemba LABS

Institute for Collider Particle Physics

University of the Witwatersrand

iThemba LABS

Laboratory for Accelerator Based Sciences

Anomalies 2021, IIT Hyderabad, 12/11/21

Outline

The simplified model

The multilepton anomalies

 Methodology

 The anatomy

A possible candidate of S

2

The Simplified Model and 2HDM+S

Eur. Phys. J. C (2016) 76:580 The simplified Model (from Run I)

- 1. The starting point of the hypothesis is the existence of a boson, H, that contains Higgs-like interactions, with a mass in the range 250-280 GeV
- 2. In order to avoid large quartic couplings, incorporate a mediator scalar, S, that interacts with the SM and Dark Matter.
- 3. Dominance of H→Sh,SS decay over other decays

The Decays of H

In the general case, H can have couplings as those displayed by a Higgs boson in addition to decays involving the intermediate scalar and Dark Matter

The 2HDM+S

Eur. Phys. J. C (2016) 76:580

Introduce singlet real scalar, S.

2HDM potential, $\mathscr{V}(\Phi_1, \Phi_2)$ **2HDM+S potential**

$$= m_{1}^{2} \Phi_{1}^{\dagger} \Phi_{1} + m_{2}^{2} \Phi_{2}^{\dagger} \Phi_{2} - m_{12}^{2} \left(\Phi_{1}^{\dagger} \Phi_{2} + \text{h.c.} \right) \\ + \frac{1}{2} \lambda_{1} \left(\Phi_{1}^{\dagger} \Phi_{1} \right)^{2} + \frac{1}{2} \lambda_{2} \left(\Phi_{2}^{\dagger} \Phi_{2} \right)^{2} \\ + \lambda_{3} \left(\Phi_{1}^{\dagger} \Phi_{1} \right) \left(\Phi_{2}^{\dagger} \Phi_{2} \right) + \lambda_{4} \left| \Phi_{1}^{\dagger} \Phi_{2} \right|^{2} \\ + \frac{1}{2} \lambda_{5} \left[\left(\Phi_{1}^{\dagger} \Phi_{2} \right)^{2} + \text{h.c.} \right] \\ + \left\{ \left[\lambda_{6} \left(\Phi_{1}^{\dagger} \Phi_{1} \right) + \lambda_{7} \left(\Phi_{2}^{\dagger} \Phi_{2} \right) \right] \Phi_{1}^{\dagger} \Phi_{2} + \text{h.c.} \right\} \\ + \left\{ \left[\lambda_{6} \left(\Phi_{1}^{\dagger} \Phi_{1} \right) + \lambda_{7} \left(\Phi_{2}^{\dagger} \Phi_{2} \right) \right] \Phi_{1}^{\dagger} \Phi_{2} + \text{h.c.} \right\} \\ + m_{3} \left[\Phi_{1}^{\dagger} \Phi_{2} + \text{h.c.} \right] S + \mu_{5} S^{3}.$$

Out of considerations of simplicity, assume S to be Higgs-like. See backup slides for more details on model parameters. 6

	S. No.	Scalars	Decay modes
The model leads to	D.1	h	$b\bar{b}, \tau^+\tau^-, \mu^+\mu^-, s\bar{s}, c\bar{c}, gg, \gamma\gamma, Z\gamma, W^+W^-, ZZ$
rich phenomenology.	D.2	Н	D.1, hh, SS, Sh
are multilepton	D.3	Α	D.1, $t\bar{t}$, Zh, ZH, ZS, $W^{\pm}H^{\mp}$
<u>signatures</u>	D.4	H^{\pm}	$W^{\pm}h, W^{\pm}H, W^{\pm}S$
	D.5	S	$D.1, \chi \chi$

Scalar	r Production mode	Search channels				
0	$gg \rightarrow H, Hjj$ (ggF and VBF)	Direct SM decays as in Table 1				
		$\rightarrow SS/Sh \rightarrow 4W \rightarrow 4\ell + E_{\rm T}^{\rm miss}$				
		$\rightarrow hh \rightarrow \gamma\gamma b\bar{b}, \ b\bar{b}\tau\tau, \ 4b, \ \gamma\gamma WW \ etc.$				
		$\rightarrow Sh$ where $S \rightarrow \chi \chi \implies \gamma \gamma, b\bar{b}, 4\ell + E_{\rm T}^{\rm miss}$				
H	$pp \rightarrow Z(W^{\pm})H \ (H \rightarrow SS/Sh)$	$\rightarrow 6(5)l + E_{\rm T}^{\rm miss}$				
		$\rightarrow 4(3)l + 2j + E_{\rm T}^{\rm miss}$				
N		$\rightarrow 2(1)l + 4j + E_{\mathrm{T}}^{\mathrm{miss}}$				
)	$pp \rightarrow t\bar{t}H, (t+\bar{t})H (H \rightarrow SS/Sh)$	i) $\rightarrow 2W + 2Z + E_{\rm T}^{\rm miss}$ and <i>b</i> -jets				
-		$\rightarrow 6W \rightarrow 3$ same sign leptons + jets and $E_{\rm T}^{\rm miss}$				
7	$pp \rightarrow tH^{\pm} (H^{\pm} \rightarrow W^{\pm}H)$	$\rightarrow 6W \rightarrow 3$ same sign leptons + jets and $E_{\rm T}^{\rm miss}$				
H±	$pp ightarrow tbH^{\pm} \ (H^{\pm} ightarrow W^{\pm}H)$	Same as above with extra <i>b</i> -jet				
	$pp ightarrow H^{\pm}H^{\mp} \ (H^{\pm} ightarrow HW^{\pm})$	$\rightarrow 6W \rightarrow 3$ same sign leptons + jets and $E_{\rm T}^{\rm miss}$				
_	$pp \rightarrow H^{\pm}W^{\pm} (H^{\pm} \rightarrow HW^{\pm})$	$\rightarrow 6W \rightarrow 3$ same sign leptons + jets and $E_{\rm T}^{\rm miss}$				
	$gg \rightarrow A (ggF)$	$\rightarrow t\bar{t}$				
3		$\rightarrow \gamma\gamma$				
A	$gg \rightarrow A \rightarrow ZH \ (H \rightarrow SS/Sh)$	Same as $pp \rightarrow ZH$ above, but with resonance structure over final state objects				
	$gg \rightarrow A \rightarrow W^{\pm}H^{\mp}(H^{\mp} \rightarrow W^{\mp}H)$	6W signature with resonance structure over final state objects				

It is paramount to remark that the excesses are seen in final states that were predicted 2015/2016 on the basis of a simplified model and not the result of scan of the available phase-space. Additionally, the parameters of the model where fixed then leaving only one degree of freedom: normalization Thus, no look-elsewhere effects in parameter or phase-space

Top associated Higgs production (Multi-lepton final states)

Reduced cross-section of ttH+tH is compensated by di-boson, (SS, Sh) decay and large Br(S→WW). Production of same sign leptons, three leptons is enhanced. Enhanced tH cross-section Produces SS 2I, 3I with b-jets, including 3 b-jets

Explains anomalously large ttW+tth+4t cross-sections seen by ATLAS and CMS 10

Methodology

(to avoid biases and look-else-where effects)

Fixed final states and phase-space defined by fixed model parameters. <u>NO tuning, NO scanning</u>

Update same final states with more data in Run 2

Study new final states where excesses predicted and data available in Run 1 and Run 2 (e.g., SS0b, 3l0b, ZW0b)

J.Phys. G46 (2019) no.11, 115001 JHEP 1910 (2019) 157 Chin.Phys.C 44 (2020) 6, 063103 Physics Letters B 811 (2020) 135964 Eur.Phys.J.C 81 (2021) 365

BSM inputs to the fit

- The following <u>assumptions</u> are made:
 - a. The masses of H and S are fixed to m_H = 270 GeV and m_S = 150 GeV
 - b. The only significant production mechanisms of *H* come from the *t*-*t*-*H* Yukawa coupling:
 - Gluon fusion
 - Top associated production
 - c. The Yukawa coupling is scaled away from the SM Higgs-like value by the free parameter β_q
 - d. The BR of *H* → *Sh* is fixed to 100%

e. The BRs of *S* are Higgs-like

• Therefore, the only free parameter in the fits is β_g^2

Combination of fit results (2019)

- Simultaneous fit for all measurements:
- To the right: (-2 log) profile likelihood ratio for each individual result and the combination of them all
- The significance for each fit is calculated as

 $\sqrt{-2\log\lambda(0)}$

- Best-fit: $\beta_g^2 = 2.92 \pm 0.35$
- Corresponds to 8.04σ

Excesses have been growing since, $\frac{1}{2}$ and new have emerged (Eur.Phys.J.C 81 (2021) 365)

Interpretation: Measure of the inability of current MC tools to describe multiple-lepton data and how a simplified model with $H \rightarrow Sh$ is able to capture the effect with one parameter

13

Results not included in the combination

Eur. Phys. J. C 80 (2020) 528

Residual discrepancies at high m_{II} will be fixed with missing NNLO QCD and NLO EW corrections

Excess at low mll remains prevalent, indicating that effects seen in Run 1 were not statistical fluctuations. NNLO QCD corrections do not fix the issue (see Mitov et al.) 14

Excesses in di-leptons with full-jet veto not included above

The anatomy of inclusive ttW at the LHC

S.Buddenbrock, R.Ruiz and B.M. Physics Letters B 811 (2020) 135964

Using fixed order computations at $O(\alpha_s^4 \alpha)$ and NLO multi-jet matching yielding similar (10%-14%) corrections to the inclusive rate

		i j -	$\rightarrow t \bar{t} W^{\pm} k l$			
(i, j)	(k, l)	$p_T^{j_1 \min}$	$p_T^{j_2 \min}$	σ [fb]	$\pm \delta_{\mu_f,\mu_r}$	$\pm \delta_{ m PDF}$
All	All	75 GeV	75 GeV	34.7 (100%)	+57%	+1.1%
(g, Q)	(g, Q)			23.7 (68%)		
(Q, Q)	(Q,Q)			6.99 (20%)		
(Q, Q)	(g,g)			3.63 (10%)		
(g,g)	(q,\overline{q})			0.437 (1.3%)		
All	All	100 GeV	75 GeV	33.1 (100%)	+57% -34%	$^{+1.0\%}_{-1.0\%}$
(g, Q)	(g, Q)			22.6 (68 %)		
(Q, Q)	(Q,Q)			6.78 (20%)		
(Q, Q)	(g,g)			3.28 (9.9%)		
(g,g)	(q,\overline{q})			0.409 (1.2%)		
All	All	100 GeV	100 GeV	21.2 (100%)	+57% -34%	$^{+1.1\%}_{-1.1\%}$
(g, Q)	(g, Q)			14.3 (67%)		
(Q, Q)	(Q,Q)			4.91 (23%)		
(Q,Q)	(g,g)			1.75 (8%)		
(g,g)	(q,\overline{q})			2.58 (1%)		
(g, q_V)	(g, q_V)	75 GeV	75 GeV	20.1 (58%)	+58% -35%	+2.3% -2.3%
(g, q_V)	(g, q_V)	100 GeV	75 GeV	19.3 (58%)	+58% -35%	+2.3% -2.3%
(g, q_V)	(g, q_V)	100 GeV	100 GeV	12.2 (58%)	+59% -35%	+2.4% -2.4%

Anatomy of the multi-lepton anomalies

Final state	Characteristic	Dominant SM process	Significance
l+l- + jets, b-jets	m _{II} <100 GeV, dominated by 0b- jet and 1b-jet	tt+Wt	>5σ
l+l- + full-jet veto	m _{II} <100 GeV	ww	~3σ
l±l± & l±l±l + b- jets	Moderate H_T	ttW, 4t	>3σ
l [±] l [±] & l [±] l [±] l et al., no b-jets	In association with h	Wh, WWW	~4 . 5σ
Z(→I⁺I⁻)+I	р _{тz} <100 GeV	ZW	>3σ

Anomalies cannot be explained by mismodelling of a particular process, e.g. ttbar production alone. In both ATLAS and CMS.

A possible candidate of S

Procedure (avoiding "cherry picking")

- □ Setting a well-defined procedure is essential to the integrity of a search. Scanning nullifies significance
- **□** From the di-lepton anomalies: $m_h < m_s < 170$ GeV
 - **It is critical that search be localized and motivated**
- \Box Focus on $\gamma\gamma$ and $Z\gamma$ decays
- □As per the model that described the multi-lepton anomalies, we select final state according to diboson signatures. S is produced via the decay of something heavier and not directly
 - **Re-use Higgs boson data**
 - **Remove VBF and boosted topologies**
 - Related to direct production

Analysis of publicly available di-photon and $Z\gamma$ spectra in associated production gives global 4.8σ excess around 151 GeV. Fiducial yields consistent with $H \rightarrow SS^*$ hypothesis with m_H=270 GeV (see above)

Excess not seen in $S \rightarrow ZZ \rightarrow 4\ell, \ell = e, \mu$

Result is obtained with public results from the LHC experiments

Abovementioned excess further motivates searches for bosons in asymmetric $\gamma\gamma$ bb configurations not performed before at the LHC

Events / 10 GeV

40

35

30

25

20

15

10

5

200

 $M_{\gamma\gamma bb}$ [GeV]

Some tantalizing results around 96 GeV from LEP and CMS, not contradicted by ATLAS. Interesting to see what the full Run 2 data set has to say. Further motivates asymmetric searches $H\rightarrow$ SS'...

LEP, Phys. Lett. B 565 (2003) 61–75

 19.7 fb^{-1} (8 TeV) + 35.9 fb⁻¹ (13 TeV) CMS 1-CL_h 1.6 $\sigma_{\rm H} \times {\rm B}({\rm H} \rightarrow \gamma \gamma)_{\rm 95\% CL} \ / \ \sigma_{\rm H} \times {\rm B}({\rm H} \rightarrow \gamma \gamma)_{\rm SM}$ LEP $H \rightarrow \gamma \gamma$ Observed 1 1.4 Expected $\pm 1\sigma$ Expected $\pm 2\sigma$ 1.2 -1 10 2σ 0.8 -2 0.6 Observed 10 Expected for signal plus background **Expected for background** 0.4 3σ 0.2 -3 10 85 105 115 120 80 90 95 110 100 $m_{\rm H}({\rm GeV/c}^2)$ 85 105 80 90 95 100 110 m_H (GeV)

CMS, Phys. Lett. B 793 (2019) 320–347

24

Outlook and Conclusions

- □Anomalies in multi-lepton final states at LHC w.r.t. current MCs are not statistical fluctuations
 - **They appear in corners of the phase-space dominated by different processes** (wt/tt/4t, vv, ttv, vh, www)
 - Hard to explain with MC mismodelling
 - □ Discrepancies interpreted with simplified model where $H \rightarrow SS$, Sh is treated as SM Higgs-like and one parameter is floated
- □Analysis of $\gamma\gamma/Z\gamma$ spectra in associated production gives global 4.8 σ excess around 151 GeV
 - **UWhen combined with multi-lepton anomalies** >>5 σ
 - □Motivates $H \rightarrow SS^*$, $Sh \rightarrow \gamma\gamma bb$ searches, where asymmetric configurations play an important role

Additional Slides

For simplicity we will assume that the S SM Higgs boson decays like the

Masses in the 2HDM+S

$$\begin{pmatrix} H_1 \\ H_2 \\ H_3 \end{pmatrix} = \mathbb{R} \begin{pmatrix} \rho_1 \\ \rho_2 \\ \rho_S \end{pmatrix},$$

Mass-matrix for the CP-even scalar sector will modified with respect to 2HDM and that needs a 3 x3 matrix (three mixing angles). Couplings are modified.

 $\mathbb{R} = \begin{pmatrix} c_{\alpha_{1}}c_{\alpha_{2}} & s_{\alpha_{1}}c_{\alpha_{2}} & s_{\alpha_{2}} \\ -(c_{\alpha_{1}}s_{\alpha_{2}}s_{\alpha_{3}} + s_{\alpha_{1}}c_{\alpha_{3}}) & c_{\alpha_{1}}c_{\alpha_{3}} - s_{\alpha_{1}}s_{\alpha_{2}}s_{\alpha_{3}} & c_{\alpha_{2}}s_{\alpha_{3}} \\ -c_{\alpha_{1}}s_{\alpha_{2}}s_{\alpha_{3}} + s_{\alpha_{1}}s_{\alpha_{3}} & -(c_{\alpha_{1}}s_{\alpha_{3}} + s_{\alpha_{1}}s_{\alpha_{2}}c_{\alpha_{3}}) & c_{\alpha_{2}}c_{\alpha_{3}} \end{pmatrix}$

$$M_{\rm CP-even}^2 = \begin{pmatrix} 2\lambda_1 v_1^2 - m_{12} \frac{v_2}{v_1} & m_{12} + \lambda_{345} v_1 v_2 & 2\kappa_1 v_1 v_S \\ m_{12} + \lambda_{345} v_1 v_2 & -m_{12} \frac{v_2}{v_1} + 2\lambda_2 v_2^2 & 2\kappa_2 v_2 v_S \\ 2\kappa_1 v_1 v_S & 2\kappa_2 v_2 v_S & \frac{1}{3}\lambda_S v_S^2 \end{pmatrix}$$

$$m_{H_1}^2 = v_S \sin \alpha_2 \left[\lambda_7 v \cos \alpha_1 \cos \alpha_2 \cos \beta + \lambda_8 v \sin \alpha_1 \cos \alpha_2 \sin \beta + \lambda_6 v_S \sin \alpha_2 \right],$$

$$m_{H_2}^2 = \left(\cos \alpha_1 \cos \alpha_3 - \sin \alpha_1 \sin \alpha_2 \sin \alpha_3 \right) \left[\cos \alpha_1 \cos \alpha_2 \left(\lambda_{345} v^2 \sin \beta \cos \beta - m_{12}^2 \right) + \sin \alpha_1 \cos \alpha_2 \left(m_{12}^2 \cot \beta + \lambda_2 v^2 \sin^2 \beta \right) + \lambda_8 v v_S \sin \alpha_2 \sin \beta \right],$$

$$m_{H_3}^2 = \left(\sin \alpha_1 \sin \alpha_3 - \sin \alpha_2 \cos \alpha_1 \cos \alpha_3 \right) \left[\cos \alpha_1 \cos \alpha_2 \left(m_{12}^2 \tan \beta + \lambda_1 v^2 \cos^2 \beta \right) + \sin \alpha_1 \cos \alpha_2 \left(\lambda_{345} v^2 \sin \beta \cos \beta - m_{12}^2 \right) + \lambda_7 v v_S \sin \alpha_2 \cos \beta \right].$$

$$(2.17)$$

Perform scans after fixing masses of physical bosons(m_{h1} =125 GeV, m_{h2} =140, m_{h3} =270 GeV, m_{A} =600 GeV, $m_{H}\pm$ =600 GeV) in addition to the constraints described in arXiv:1711.07874, including the signal Yukawa coupling strength of β_{g}^{2} =1.38±0.22 (translated into tan² β)

Correlation plots for the three mixing angles and tanß. Blue (red) points correspond to Br($h \rightarrow$ SM) within 10% (20%) of the SM h values (J.Phys. G46 (2019) no.11, 115001)

Results using N2HDECAY (arXiv:1612.01309) for one benchmark point

Impact of NNLO QCD in WW

The NNLO QCD corrections shift the m_{II} spectrum towards larger values.

The discrepancy becomes larger in the region of interest with m_{II}<100 GeV

A.Denner, M.Pellen, arXiv:1607.05571

EW corrections are important at high p_T due to Sudakov logarithms. Effect is less than 1% for m_{II} <100 GeV, where discrepancies are seen.

The HistFactory method

K. Cranmer, G. Lewis, L. Moneta, A. Shibata, and W. Verkerke, *HistFactory: A tool for creating statistical models for use with RooFit and RooStats*, CERN-OPEN-2012-016.

- Constructs a likelihood function from template histograms
- Allows for a simple implementation of systematic uncertainties that affect normalisation and/or shape

$$\mathcal{P}(n_{cb}, a_p \mid \phi_p, \alpha_p, \gamma_b) = \prod_{c \in \text{channels}} \prod_{b \in \text{bins}} \text{Pois}(n_{cb} \mid \nu_{cb}) \cdot G(L_0 \mid \lambda, \Delta_L) \cdot \prod_{p \in \mathbb{S} + \Gamma} f_p(a_p \mid \alpha_p)$$

In our case, each "channel" is a different measurement.	The Poisson probability for the "expected" and "observed" number of events per bin.	Functional form of luminosity and its variations (not	Functional form of systematic variation with nuisance parameter αp.
		necessary for us).	

31 with $Z \rightarrow II$ (ZW cross-section)

CMS PAS SMP-18-002

Errors in the plot are dominated by the 15% uncertainty on normalization to account NLO/NNLO differences. The uncertainty of the shape is much smaller of order of few

A /	▲ (
%	Source	Combined	eee	eeµ	μμе	μμμ
	Electron efficiency	1.9	5.9	3.9	1.9	0
	Electron scale	0.3	0.9	0.2	0.6	0
	Muon efficiency	1.9	0	0.8	1.8	2.6
	Muon scale	0.5	0	0.7	0.3	0.9
	Trigger efficiency	1.9	2.0	1.9	1.9	1.8
	Jet energy scale	0.9	1.6	1.0	1.7	0.8
	B-tagging (id.)	2.6	2.7	2.6	2.6	2.4
	B-tagging (mis-id.)	0.9	1.0	0.9	1.0	0.7
	Pileup	0.8	0.9	0.3	1.3	1.4
Γ	ZZ	0.6	0.7	0.4	0.8	0.5
Systematics	Nonprompt norm.	1.2	2.0	1.2	1.5	1.0
that will	Nonprompt (EWK subs.)	1.0	1.5	1.0	1.3	0.8
	VVV norm.	0.5	0.6	0.6	0.6	0.5
airectly	VH norm.	0.2	0.2	0.3	0.2	0.2
affect the	tt V norm.	0.5	0.5	0.5	0.5	0.5
shape	tZq norm.	0.1	0.1	0.1	0.1	0.1
	$X+\gamma$ norm.	0.3	0.8	0	0.7	0
	Total systematic	4.7	7.8	5.8	5.7	4.6
	Luminosity	2.8	2.9	2.8	2.9	2.8
	Statistical	2.1	6.0	4.8	4.1	3.1
	Total experimental	6.0	10.8	8.0	7.5	6.3
	Theoretical	0.9	0.9	0.9	0.9	0.9

CMS-PAS-SMP-18-002: √s = 13 TeV, 35.9 fb⁻¹ 1200 Events / bin CMS data JHEP 1910 (2019) 157 WZ 1000 ZZ X+y ttX 800 VVV Vh tZq 600 Non-prompt SM systematic uncertainty SM + BSM with $\beta_a^2 = 9.7$ 400 $m_{H} = 270 \text{ GeV} / m_{S}^{2} = 150 \text{ GeV}$ 200 C 1.4 Data/SM 1.2 0.8 0.6^t 50 100 150 200 250 300 p^z_T [GeV]

Figure 10: The effects of scale variations in the differential cross section of the SM WZ process as a function of the $Z p_{\rm T}$. Here, aMC@NLO and Pythia 8 were used to generate the events. The thick black line represents the spectrum at the nominal scale, and each grey line is a variation of the scale. The insert shows the maximum and minimum relative deviations for all scale variations.

The fitting procedure

- The RooStats workspace is made by HistFactory
- From the workspace, a profile likelihood ratio is calculated,

 $\lambda\left(eta_{g}^{2}
ight)=rac{L\left(eta_{g}^{2}\mid\hat{ heta}
ight)}{L\left(\hat{eta}_{g}^{2}\mid\hat{ heta}
ight)}$ (here heta denotes the nuisance parameters)

- The best-fit value of β_q^2 is then calculated as the minimum of $-2\log(\lambda)$, with an error corresponding to a unit of deviation in this quantity from the best-fit point
- The significance is calculated as $\sqrt{(-2 \log \lambda(0))}$, since $\beta_q^2 = 0$ corresponds to the SM-only hypothesis

Impact on Higgs Physics

The presence of a BSM signal of the type $H \rightarrow Sh$ would lead to:

- The presence of <u>extra leptons</u> in association with h. Affects the Wh measurement (Eur.Phys.J.C 81 (2021) 365)
- **Distortion of Higgs** p_T and rapidity (under study)

No tuning of model parameters performed. Look at fixed corners of the phase-space fixed with parameters of 2017.

Survey of LHC results on Vh (V=W,Z) production (Eur.Phys.J.C 81 (2021) 365)

The BSM (H \rightarrow Sh) signal appears at low p_{Th} and the SM signal is prevalent at larger p_{Th} (no tuning of parameters)

Include those results from ATLAS and CMS where no requirements on p_{Th} (or correlated observables) is not done or used in an MVA.

Those results where the final state is treated more "inclusively" display elevated signal strengths for Wh production:

 $\mu(Wh) = 2.41 \pm 0.37$

This represents a 3.8 σ deviation from the SM value of 1. BSM signal normalization less than expected from multilepton excesses assuming Br(H \rightarrow Sh)=100%. Indicates that Br(H \rightarrow SS) > Br(H \rightarrow Sh)

Higgs	Ref.	Experiment	\sqrt{s}, \mathcal{L}	Final	Category	μ	Used in	Comments
decay			TeV, fb ⁻¹	state			combination	
					DFOS 2j	$2.2^{+2.0}_{-1.9}$	1	
				2ℓ	SS 1j	$8.4^{+4.3}_{-3.8}$	1	2ℓ combination: $\mu = 3.7^{+1.9}_{-1.5}$
	661	ATLAS	7, 4.5		SS 2j	$7.6^{+6.0}_{-5.4}$	1	
			8, 20.3		1SFOS	$-2.9^{+2.7}_{-2.1}$	x	$m_{\ell_0\ell_2}$ used as input
				34	OSFOS	$1.7^{+1.9}$	1	BDT discriminating variable
WW	_		0.000000000	25/27	1SFOS	-1.4		1SFOS channel uses mare in th
	[67]	ATLAS	13, 36.1	3ℓ	OSFOS	$2.3^{+1.2}_{-1.0}$	1	BDT but excess driven by 0SFC
	lead	0.6	7, 4.9	2ℓ	DFOS 2j	$0.39^{+1.97}_{-1.87}$	1	Discrepancy at low $m_{\ell\ell}$
	68	CMS	8, 19.4	3ℓ	0+1SFOS	$0.56^{+1.27}_{-0.95}$	1	
	Food .	03.63		2ℓ	DFOS 2j	$3.92^{+1.32}_{-1.17}$	1	Discrepancy at low $m_{\ell\ell}$
	69	CMS	13, 35.9	3ℓ	0+1SFOS	$2.23^{+1.76}_{-1.53}$	1	
	201	ATT A C	e an a	1ℓ	$\ell + \tau_h \tau_h$	1.8 ± 3.1	1	
	10	ATLAS	8, 20.3	2ℓ	$e^{\pm}\mu^{\pm} + \tau_{\rm h}$	1.3 ± 2.8	1	
	-	CMS	7, 4.9	1ℓ	$\ell + \tau_h \tau_h$		x	BDT based on $p_{\rm T}^{\tau_1} + p_{\rm T}^{\tau_2}$
77	[n]		8, 19.7	2ℓ	$e^\pm \mu^\pm + \tau_{\rm h}$	-0.33 ± 1.02	x	Split $p_{\mathrm{T}}^{\ell_1} + p_{\mathrm{T}}^{\ell_2} + p_{\mathrm{T}}^{\tau}$ at 130 GeV
-	Inol	CMS	13, 35.9	1ℓ	$\ell + \tau_h \tau_h$	$3.39^{+1.68}_{-1.54}$	7	
	12			2ℓ	$e^\pm \mu^\pm + \tau_{\rm h}$		· ·	
	1222	ATLAS	7, 5.4 8, 20.3	lν	One-lepton			
	[73]			fv, vv	$E_{\mathrm{T}}^{\mathrm{miss}}$	1.0 ± 1.6	x	$E_{\rm T}^{\rm miss} > 70-100~{\rm GeV}$
				jj	Hadronic			$p_{\rm Tt}^{\gamma\gamma} > 70~{ m GeV}$
	1	CMS	7, 5.1 8, 19.7	lv	One-lepton			Split $E_{\rm T}^{\rm miss}$ at 45 GeV
	[74]			fv, vv	$E_{\mathrm{T}}^{\mathrm{miss}}$	$-0.16\substack{+1.16\\-0.79}$	x	$E_{\mathrm{T}}^{\mathrm{miss}} > 70~\mathrm{GeV}$
				jj	Hadronic			$p_{\rm T}^{\gamma\gamma}>13m_{\gamma\gamma}/12$
				e.	One-lenter	$2.41\substack{+0.71 \\ -0.70}$	1	$p_{\rm T}^{\ell+E_{\rm T}^{\rm mins}} < 150~{\rm GeV}$
		ATLAS	13, 139	er	One-repron	$2.64\substack{+1.16\\-0.99}$	x	$p_T^{\ell+E_T^{miss}} > 150 \text{ GeV}$
71	[75]			10,00	$E_{\mathrm{T}}^{\mathrm{miss}}$		x	$E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$
					Hadronia	$0.76\substack{+0.95\\-0.83}$	x	$60 < m_{jj} < 120~{\rm GeV}$
				<i>JJ</i>	Hadronic	$3.16^{+1.84}_{-1.72}$	1	$m_{jj} \in [0, 60] [120, 350] {\rm GeV}$
		6 CMS	13, 35.6	ℓv	One-lepton	$3.0^{+1.5}_{-1.3}$	x	Superseeded by full Run 2 resul
	[76]			10,00	$E_{\mathrm{T}}^{\mathrm{miss}}$		x	$E_{\mathrm{T}}^{\mathrm{miss}} > 85~\mathrm{GeV}$
				jj	Hadronic	$5.1^{+2.5}_{-2.3}$	1	$p_{\rm T}^{\gamma\gamma}/m_{\gamma\gamma}$ not used
	77	CMS	13, 137	ℓv	One-lepton	$1.31\substack{+1.42 \\ -1.12}$	1	$p_{\rm T}^V < 75~{\rm GeV}$
				jj	Hadronic	$0.89\substack{+0.89\\-0.91}$	x	$p_{\rm T}^{\gamma\gamma}/m_{\gamma\gamma}$ used in BDT
	781	ATLAS	13, 139	$\ell\ell\ell\ell + \ell\nu$	Lep-enriched	1.44+1.17		Number of jets used in MVA
				$\ell\ell\ell\ell\ell + q\bar{q}$	2j	-0.93	<u>^</u>	m_{jj} used in MVA
ZZ	1	CMS	13, 137.1	$\ell\ell\ell\ell + \ell\nu$	Lep-low $p_{\rm T}^h$	$3.21\substack{+2.49\\-1.85}$	1	$p_{\rm T}^h < 150~{ m GeV}$
	[79]			$\epsilon\epsilon\epsilon\epsilon + \epsilon\nu$	Lep-high $p_{\rm T}^h$	$0.00\substack{+1.57 \\ -0.00}$	x	p_{T}^{h} >150 GeV
				$\ell\ell\ell\ell\ell+q\bar{q}$	2j	$0.57\substack{+1.20 \\ -0.57}$	x	$60 < m_{jj} < 120~{\rm GeV}$

New results from CMS in the measurement of Vh, h→WW add to the anomalies reported in Eur.Phys.J.C 81 (2021) 365

Deviation from the SM becomes stronger with p_{TV}<150 Gev

Chin.Phys.C 44 (2020) 6, 063103

$$\Delta a_{\mu} = a_{\mu}^{\rm Exp} - a_{\mu}^{\rm SM} = 2.87(80) \times 10^{-9}$$

The Muon g-2 and the 2HDM+S

2HDM+S potential with fixed parameters from multi-lepton anomalies at the LHC

$$\begin{split} V(\Phi_{1}, \Phi_{2}, \Phi_{S}) \\ &= m_{11}^{2} |\Phi_{1}|^{2} + m_{22}^{2} |\Phi_{2}|^{2} - m_{12}^{2} \left(\Phi_{1}^{\dagger}\Phi_{2} + \text{h.c.}\right) \\ &+ \frac{\lambda_{1}}{2} \left(\Phi_{1}^{\dagger}\Phi_{1}\right)^{2} + \frac{\lambda_{2}}{2} \left(\Phi_{2}^{\dagger}\Phi_{2}\right)^{2} + \lambda_{3} \left(\Phi_{1}^{\dagger}\Phi_{1}\right) \left(\Phi_{2}^{\dagger}\Phi_{2}\right) \\ &+ \lambda_{4} \left(\Phi_{1}^{\dagger}\Phi_{2}\right) \left(\Phi_{2}^{\dagger}\Phi_{1}\right) + \frac{\lambda_{5}}{2} \left[\left(\Phi_{1}^{\dagger}\Phi_{2}\right)^{2} + \text{h.c.} \right] \\ &+ \frac{1}{2}m_{S}^{2}\Phi_{S}^{2} + \frac{\lambda_{6}}{8}\Phi_{S}^{4} + \frac{\lambda_{7}}{2} \left(\Phi_{1}^{\dagger}\Phi_{1}\right) \Phi_{S}^{2} + \frac{\lambda_{8}}{2} \left(\Phi_{2}^{\dagger}\Phi_{2}\right) \Phi_{S}^{2} \end{split}$$

Consider extra degrees of freedom in the form of SM singlet vector-like fermions

$$\mathcal{L} \supset -y_{f'}^S \overline{l_R} \Phi_S f'_L - \sum_{i=1}^2 y_{f'}^i \overline{L_l} \Phi_i f'_R + \text{h.c.},$$

Allowed fermion masses with different choices of Yukawa couplings

G.Beck, E.Malwa, M.Kumar, R.Temo and B.M., 2102.10596

The multi-lepton anomalies and excesses in astrophysics

AMS02, PRL 122, 041102 (2019)

