## Supersymmetric Solutions of the Flavor Anomalies

Wolfgang Altmannshofer waltmann@ucsc.edu



#### Anomalies 2021 November 10 - 12, 2021, Hyderabad

# Overview of the Anomalies

### The $B_s \rightarrow \mu^+ \mu^-$ and $B_d \rightarrow \mu^+ \mu^-$ Decays

WA, Stangl 2103.13370; combination of LHCb 2108.09284, CMS 1910.12127, ATLAS 1812.03017



 $\sim 2\sigma$  tension between SM and experiment

Wolfgang Altmannshofer (UCSC)

### Semileptonic Branching Ratios



Wolfgang Altmannshofer (UCSC)

## The $P'_5$ Anomaly

 $P_5^\prime \sim$  a moment of the  $B 
ightarrow K^* \mu^+ \mu^-$  angular distribution



Anomaly persists in the latest update of  $B^0 \rightarrow K^{*0}\mu^+\mu^-$  with 2016 data. (Anomaly also seen in  $B^{\pm} \rightarrow K^{*\pm}\mu^+\mu^-$  LHCb 2012.13241)

#### Evidence for Lepton Flavor Universality Violation



$${\it R}_{{\it K}^{(*)}}=rac{{\it BR}({\it B}
ightarrow {\it K}^{(*)}\mu\mu)}{{\it BR}({\it B}
ightarrow {\it K}^{(*)}{\it ee})}$$

$$\textit{\textbf{R}}_{\textit{K}^+}^{[1,6]} = 0.846^{+0.042\,+0.013}_{-0.039\,-0.012}$$

$$\begin{split} R^{[0.045,1.1]}_{K^{*0}} &= 0.66^{+0.11}_{-0.07} \pm 0.03 \\ R^{[1.1,6]}_{K^{*0}} &= 0.69^{+0.11}_{-0.07} \pm 0.05 \\ R^{[1.1,6]}_{K_S} &= 0.66^{+0.20}_{-0.14}_{-0.04} \\ R^{[0.045,6]}_{K^{*+}} &= 0.70^{+0.18}_{-0.13}_{-0.04} \\ R^{[0.1,6]}_{\rho K} &= 0.86^{+0.14}_{-0.11} \pm 0.05 \end{split}$$

#### LHCb 2103.11769

### LFU in Charged Current Decays: $R_D$ and $R_{D^*}$

Bernlochner, Franco Sevilla, Robinson, 2101.08326



 $egin{aligned} R_D &= rac{BR(B o D au
u)}{BR(B o D\ell
u)} \ R_{D^*} &= rac{BR(B o D^* au
u)}{BR(B o D^*\ell
u)} \end{aligned}$ 

 $\ell = \mu, e$  (BaBar/Belle)  $\ell = \mu$  (LHCb)

 $\textit{R}_{\textit{D}}^{\textit{exp}}/\textit{R}_{\textit{D}}^{\textit{SM}} = 1.13 \pm 0.10 \;, \quad \textit{R}_{\textit{D}^{*}}^{\textit{exp}}/\textit{R}_{\textit{D}^{*}}^{\textit{SM}} = 1.15 \pm 0.06$ 

#### combined discrepancy with the SM: 3.6 $\sigma$

(the heavy flavor averaging group quotes  $3.1\sigma$ )

Wolfgang Altmannshofer (UCSC)

SUSY Solutions of the Flavor Anomalies

#### Anomalous Magnetic Moment of the Muon



4.2  $\sigma$  discrepancy between the experimental average (Fermilab g-2, 2104.03281) and the SM consensus (Aoyama et al. 2006.04822)

(see, however, the lattice results from BMW 2002.12347)

$$\Delta a_{\mu} = (251 \pm 59) imes 10^{-11}$$

#### (Selection of) Anomalies in 2021



#### (Selection of) Anomalies in 2021





| $B_{s}  ightarrow \mu \mu$ rate | semileptonic<br>rates | angular<br>observables | LFU<br>ratios | $(g-2)_{\mu}$ |
|---------------------------------|-----------------------|------------------------|---------------|---------------|
|                                 |                       |                        |               |               |
|                                 |                       |                        |               |               |
|                                 |                       |                        |               |               |
|                                 |                       |                        |               |               |
|                                 |                       |                        |               |               |
|                                 |                       |                        |               |               |

|                         | $egin{array}{c} B_{\! {\cal S}}  ightarrow \mu \mu \  m rate \end{array}$ | semileptonic<br>rates | angular<br>observables | LFU<br>ratios | $(g-2)_{\mu}$ |
|-------------------------|---------------------------------------------------------------------------|-----------------------|------------------------|---------------|---------------|
| experimental<br>issues? | ?                                                                         | ?                     | ?                      | ?             | ?             |
|                         |                                                                           |                       |                        |               |               |

|                              | $egin{array}{c} {\cal B}_{{\cal S}}  ightarrow \mu \mu \  m rate \end{array}$ | semileptonic<br>rates | angular<br>observables | LFU<br>ratios | $(g-2)_{\mu}$ |
|------------------------------|-------------------------------------------------------------------------------|-----------------------|------------------------|---------------|---------------|
| experimental issues?         | ?                                                                             | ?                     | ?                      | ?             | ?             |
| statistical<br>fluctuations? | $\checkmark$                                                                  | $\checkmark$          | $\checkmark$           | $\checkmark$  | ×             |

|                              | $B_{s}  ightarrow \mu \mu$ rate | semileptonic<br>rates | angular<br>observables | LFU<br>ratios | $(g-2)_{\mu}$ |
|------------------------------|---------------------------------|-----------------------|------------------------|---------------|---------------|
| experimental issues?         | ?                               | ?                     | ?                      | ?             | ?             |
| statistical fluctuations?    | $\checkmark$                    | $\checkmark$          | $\checkmark$           | $\checkmark$  | X             |
| parametric<br>uncertainties? | $\checkmark$                    | $\checkmark$          | ×                      | ×             | X             |
|                              |                                 |                       |                        |               |               |
|                              |                                 |                       |                        |               |               |

|                                  | $egin{array}{c} {\cal B}_{s}  ightarrow \mu \mu \  m rate \end{array}$ | semileptonic<br>rates | angular<br>observables | LFU<br>ratios | $(g-2)_{\mu}$ |
|----------------------------------|------------------------------------------------------------------------|-----------------------|------------------------|---------------|---------------|
| experimental issues?             | ?                                                                      | ?                     | ?                      | ?             | ?             |
| statistical fluctuations?        | $\checkmark$                                                           | $\checkmark$          | $\checkmark$           | $\checkmark$  | X             |
| parametric<br>uncertainties?     | $\checkmark$                                                           | $\checkmark$          | ×                      | ×             | ×             |
| underestimated hadronic effects? | ×                                                                      | $\checkmark$          | $\checkmark$           | ×             | $\checkmark$  |

|                                  | $B_{s}  ightarrow \mu \mu$ rate | semileptonic<br>rates | angular<br>observables | LFU<br>ratios | $(g-2)_{\mu}$ |
|----------------------------------|---------------------------------|-----------------------|------------------------|---------------|---------------|
| experimental issues?             | ?                               | ?                     | ?                      | ?             | ?             |
| statistical fluctuations?        | $\checkmark$                    | $\checkmark$          | $\checkmark$           | $\checkmark$  | ×             |
| parametric<br>uncertainties?     | $\checkmark$                    | $\checkmark$          | ×                      | ×             | $\times$      |
| underestimated hadronic effects? | ×                               | $\checkmark$          | $\checkmark$           | ×             | $\checkmark$  |
| New Physics?                     | $\checkmark$                    | $\checkmark$          | $\checkmark$           | $\checkmark$  | $\checkmark$  |

# The Flavor Anomalies in the MSSM

### The Minimal Supersymmetric Standard Model

- Arguably still the best motivated extension of the Standard Model
- For a natural weak scale, need light Higgsinos, light stops, and relatively light gluinos
- First and second generation of sfermions can be heavy without spoiling the successes of the MSSM (naturalness, gauge coupling unification, dark matter, ...)

#### Standard particles





### The Anomalous Magnetic Moment in the MSSM

 It is very well known that the MSSM can give sizeable contributions to (g – 2)<sub>μ</sub> via tan β enhanced smuon chargino/neutralino loops

many many recent references (apologies for the omission)

- Smuons, charginos, neutralinos need to be pretty light
- Compressed spectra to avoid exising LHC constraints
- Good discovery prospects at the high luminosity LHC and e<sup>+</sup>e<sup>-</sup> colliders (ILC, CLIC)



### The Anomalous Magnetic Moment in the MSSM

 It is very well known that the MSSM can give sizeable contributions to (g – 2)<sub>μ</sub> via tan β enhanced smuon chargino/neutralino loops

many many recent references (apologies for the omission)

- Smuons, charginos, neutralinos need to be pretty light
- Compressed spectra to avoid exising LHC constraints
- Good discovery prospects at the high luminosity LHC and e<sup>+</sup>e<sup>-</sup> colliders (ILC, CLIC)



 With extended SUSY Higgs sectors, smuons, charginos, neutralinos can be significantly heavier

WA, Gadam, Gori, Hamer 2104.08293

### $R_D$ and $R_{D^*}$ in the MSSM

There are tree level contributions to B → D<sup>(\*)</sup>τν from charged Higgs exchange

$$rac{R_D}{R_D^{
m SM}}\sim 1{-}1.5rac{m_ au m_b}{m_{H^\pm}^2} an^2eta$$

$$rac{R_{D^*}}{R_{D^*}^{
m SM}} \sim 1{-}0.12 rac{m_ au m_b}{m_{H^\pm}^2} an^2eta$$

► Effect goes in the wrong direction and is much smaller for R<sub>D\*</sub>



### $R_D$ and $R_{D^*}$ in the MSSM

There are tree level contributions to B → D<sup>(\*)</sup>τν from charged Higgs exchange

$$rac{R_D}{R_D^{
m SM}}\sim 1{-}1.5rac{m_ au m_b}{m_{H^\pm}^2}\,{
m tan}^2\,eta$$

$$rac{R_{D^*}}{R_{D^*}^{
m SM}} \sim 1{-}0.12 rac{m_ au m_b}{m_{H^\pm}^2} an^2eta$$

- ► Effect goes in the wrong direction and is much smaller for R<sub>D\*</sub>
- Correlated with effect in  $B \rightarrow \tau \nu$

$$\frac{\mathsf{BR}(B \to \tau \nu)}{\mathsf{BR}(B \to \tau \nu)_{\mathsf{SM}}} \simeq \left(1 - \frac{m_B^2}{m_{H^\pm}^2} \tan^2 \beta\right)^2$$

## $\Rightarrow$ Can't explain $R_{D^{(*)}}$ with charged Higgs exchange in the MSSM

Wolfgang Altmannshofer (UCSC)



#### Interlude: $R_{\kappa}$ and $R_{\kappa^*}$ Model Independently

$$\mathcal{H}_{\text{eff}}^{b \to s} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{e^2}{16\pi^2} \sum_i \left( C_i \mathcal{O}_i + C_i' \mathcal{O}_i' \right)$$



neglecting tensor operators and additional scalar operators (they are dimension 8 in SMEFT: Alonso, Grinstein, Martin Camalich 1407.7044)

Wolfgang Altmannshofer (UCSC)

SUSY Solutions of the Flavor Anomalies

#### Interlude: Global Rare B Decay Fits



 $C_9^{bs\mu\mu}(\bar{s}\gamma_{\alpha}P_Lb)(\bar{\mu}\gamma^{\alpha}\mu)$ 

 $C_{10}^{bs\mu\mu}(ar{s}\gamma_{lpha}P_{L}b)(ar{\mu}\gamma^{lpha}\gamma_{5}\mu)$ 

► LFU ratios prefer non-standard C<sub>10</sub>, but large degeneracy

WA, Stangl 2103.13370 (other recent fits: Geng et al.2103.12738; Cornella et al. 2103.16558; Alguero et al.2104.08921; Hurth et al. 2104.10058; Ciuchini et al.

2110.10126)

Wolfgang Altmannshofer (UCSC)

#### Interlude: Global Rare B Decay Fits



WA, Stangl 2103.13370 (other recent fits: Geng et al.2103.12738; Cornella et al. 2103.16558; Alguero et al.2104.08921; Hurth et al. 2104.10058; Ciuchini et al.

2110.10126)

 $C_9^{bs\mu\mu}(\bar{s}\gamma_{\alpha}P_Lb)(\bar{\mu}\gamma^{lpha}\mu)$ 

 $C_{10}^{bs\mu\mu}(\bar{s}\gamma_{lpha}P_{L}b)(\bar{\mu}\gamma^{lpha}\gamma_{5}\mu)$ 

- ► LFU ratios prefer non-standard C<sub>10</sub>, but large degeneracy
- B<sub>s</sub> → µ<sup>+</sup>µ<sup>−</sup> branching ratio shows slight preference for non-standard C<sub>10</sub>
- $b \rightarrow s\mu\mu$  observables prefer non-standard  $C_9$
- best fit point

$$C_9^{bs\mu\mu}\simeq -0.63$$

 $C_{10}^{bs\mu\mu}\simeq+0.25$ 

Wolfgang Altmannshofer (UCSC)

#### $R_{\kappa}$ and $R_{\kappa^*}$ in the MSSM



WA, Straub 1308.1501, 1411.3161

- only way to get lepton flavor non universal contribution to rare b → sℓℓ decays is through box diagrams with light winos (or Binos) and large non-universality in slepton masses.
- requires an extremely light spectrum to get  $C_9^{bs\mu\mu} \sim -0.5$ :

winos and smuons around 100 GeV; sbottoms around 500 GeV;

very challenging to hide this at the LHC...

## The Flavor Anomalies and R-Parity Violation

#### The MSSM with R-Parity Violation

- give up on a dark matter candidate, but open up possibilities to address the flavor anomalies
- consider the lepton number violating LQD and LLE interactions (no baryon number violating UDD interactions to avoid constraints from proton decay)

$$\mathcal{L}_{LQD} = \lambda'_{ijk} \left[ \widetilde{\nu}_{iL} \vec{d}_{kR} d_{jL} + \widetilde{d}_{jL} \vec{d}_{kR} \nu_{iL} + \widetilde{d}^*_{kR} \widetilde{\nu}^c_{iL} d_{jL} - \widetilde{e}_{iL} \vec{d}_{kR} u_{jL} - \widetilde{u}_{jL} \vec{d}_{kR} e_{iL} - \widetilde{d}^*_{kR} \vec{e}^c_{iL} u_{jL} \right] + \text{H.c.}$$

$$\mathcal{L}_{LLE} = \frac{1}{2} \lambda_{ijk} \Big[ \widetilde{\nu}_{iL} \tilde{\mathbf{e}}_{kR} \mathbf{e}_{jL} + \widetilde{\mathbf{e}}_{jL} \tilde{\mathbf{e}}_{kR} \nu_{iL} + \widetilde{\mathbf{e}}_{kR}^* \widetilde{\nu}_{iL}^c \mathbf{e}_{jL} - (i \leftrightarrow j) \Big] + \text{H.c.}$$

- assume that only the 3rd generation sfermions are light  $\Rightarrow$  7  $\lambda$  couplings and 19  $\lambda'$  couplings are relevant
- → RPV3 (WA, Dev, Soni 1704.06659; WA, Dev, Soni, Sui 2002.12910; Dev, Soni, Xu 2106.15647)

#### The Anomalous Magnetic Moment with RPV3



Kim, Kyae, Lee hep-ph/0103054

 1-loop contributions from λ' and λ couplings (in addition to the standard MSSM contributions)

$$\Delta \boldsymbol{a}_{\mu} = \frac{m_{\mu}^2}{96\pi^2} \sum_{k=1}^3 \left( \frac{2(|\lambda_{32k}|^2 + |\lambda_{3k2}|^2)}{m_{\widetilde{\nu}_{\tau}}^2} - \frac{|\lambda_{3k2}|^2}{m_{\widetilde{\tau}_{L}}^2} - \frac{|\lambda_{k23}|^2}{m_{\widetilde{\tau}_{R}}^2} + \frac{3|\lambda_{2k3}'|^2}{m_{\widetilde{b}_{R}}^2} \right)$$

 Need light sbottoms and/or sneutrinos with large couplings to get a relevant contribution in the right direction

Wolfgang Altmannshofer (UCSC)

#### $R_D$ and $R_{D^*}$ with RPV3



Deshpande, He 1608.04817; WA, Dev, Soni 1704.06659; ...

- Tree level contributions from sbottom or stau exchange
- Stau behaves like a charged Higgs (but its couplings are less constrained). Stau contribution disfavored by  $B_c \rightarrow \tau \nu$  branching ratio and kinematic distributions in  $B \rightarrow D^{(*)} \tau \nu$ .
- Sbottom behaves like a leptoquark. Chirality structure as prefered by model independent fits (Shi et al. 1905.08498; Murgui et al. 1904.09311; Asadi, Shih 1905.03311; Cheung et al. 2002.07272; ... )
- Can address the R<sub>D(\*)</sub> anomalies for sbottom masses O(1 TeV) and couplings λ' ~ O(1)
- need to be careful to keep  $\mu e$  universality in  $b \rightarrow c \ell \nu$

#### Viable Parameter Space





#### Collider Signatures of $R_{D^{(*)}}$ Explanation

Expect non-standard mono-tau production at the LHC

(possibly in association with b-jets)



WA, Dev, Soni 1704.06659; Greljo et al. 1811.07920; Marzocca et al. 2008.07541; ...

#### Collider Signatures of $R_{D^{(*)}}$ Explanation

Expect non-standard mono-tau production at the LHC

(possibly in association with b-jets)



WA, Dev, Soni 1704.06659; Greljo et al. 1811.07920; Marzocca et al. 2008.07541; ...



Wolfgang Altmannshofer (UCSC)

#### Implications for Neutrino Masses



Barbier et al. hep-ph/0406039; WA, Dev, Soni 1704.06659

 The RPV couplings give also 1-loop contributions to Majorana neutrino masses

$$(\hat{M}_{\nu})_{ij} = (\hat{M}_{\nu})_{ij}^{\text{tree}} + \frac{3}{8\pi^2} \frac{m_b^2 (A_b - \mu \tan \beta)}{m_{\tilde{b}}^2} \lambda'_{i33} \lambda'_{j33} + \frac{1}{8\pi^2} \frac{m_{\tau}^2 (A_{\tau} - \mu \tan \beta)}{m_{\tilde{\tau}}^2} \lambda_{i33} \lambda_{j33} + \dots$$

- Generic size of neutrino masses for sbottoms/staus masses of O(1 TeV) and couplings of O(1) is ~ 0.1 MeV
- Need cancellation to obtain sub-eV neutrino masses

#### $R_{K}$ and $R_{K^*}$ with RPV



Das et al. 1705.09188; Earl Gregoire 1806.01343; Trifinopoulos 1807.01638; Hu, Huang 1912.03676; WA, Dev, Soni, Sui 2002.12910; Bardhan et al. 2107.10163

• Tree level contribution from stop exchange have the wrong chirality

- Several loop contributions with the right chirality and  $C_9 = -C_{10}$
- Both  $\lambda$  and  $\lambda'$  couplings can be involved

#### Combined Explanations of the Anomalies



WA, Dev, Soni, Sui 2002.12910

- We consider a few benchmark scenarios
- We include a very long list of constraints:

meson mixing;

rare decays;

Z decays;

lepton flavor violation; direct LHC searches;

 Bonus: can also explain ANITA events Collins, Dev, Sui 1810.08479

#### Combined Explanations of the Anomalies



WA, Dev, Soni, Sui 2002.12910

- We consider a few benchmark scenarios
- We include a very long list of constraints:

meson mixing;

rare decays;

Z decays;

lepton flavor violation;

direct LHC searches;

 Bonus: can also explain ANITA events Collins, Dev, Sui 1810.08479

#### Collider Signatures of $R_{K^{(*)}}$ Explanation

- Based on crossing symmetry expect the processes bs → ℓℓ, gb → sℓℓ, and gs → bℓℓ.
- In RPV3: for example single stop production, giving a  $b\mu$  resonance.



WA, Dev, Soni, Sui 2002.12910

#### More RPV3 Collider Signatures of the Anomalies



*tµµ* production mediated by sbottoms



Dev, Soni, Xu 2106.15647

#### More RPV3 Collider Signatures of the Anomalies



*tµµ* production mediated by sbottoms



Dev, Soni, Xu 2106.15647

## • pair of di-muon resonances



- Rare B decays and muon g-2 show persistent discrepancies with SM predictions.
- ▶ It's not possible to explain  $R_{D^{(*)}}$  and  $R_{K^{(*)}}$  in the MSSM.
- In the context of SUSY, need RPV interactions to explain hints for lepton flavor universality violation.
- In RPV3, combined explanations of the anomalies are strongly constrained but possible.
- ► RPV3 explanations lead to interesting collider signatures.