8σ tension in $B \rightarrow \pi K$: Oasis or mirage?

Anirban Kundu

November 10, 2021 Anomalies 2021, IIT-Hyderabad

The *B* mesons: $B^+ \equiv u\bar{b}$, $B^- \equiv b\bar{u}$, $B^0 \equiv d\bar{b}$, $\overline{B}^0 \equiv b\bar{d}$

Decay rate asymmetry $\Delta(\pi K) = \Gamma(b) - \Gamma(\bar{b})$

Direct CP asymmetry
$$A_{
m CP}(\pi K) = rac{\Delta(\pi K)}{\Gamma(b) + \Gamma(ar{b})}$$

$$\begin{array}{ccc} B \to X \\ \hline B \to \overline{X} \\ \end{array} \xrightarrow{CP} \\ \hline \overline{B} \to \overline{X} \\ \end{array}$$

To have a direct CP asymmetry $A_{\rm CP} \neq 0$, there must be at least two amplitudes with *different* weak and strong phases

$$\begin{aligned} \mathcal{M}(B \to X) &\propto A_1 \exp(i\theta_1) \exp(i\delta_1) + A_2 \exp(i\theta_2) \exp(i\delta_2) \\ \overline{\mathcal{M}}(\overline{B} \to \overline{X}) &\propto A_1 \exp(-i\theta_1) \exp(i\delta_1) + A_2 \exp(-i\theta_2) \exp(i\delta_2) \\ A_{\rm CP} &\propto \left|\mathcal{M}\right|^2 - \left|\overline{\mathcal{M}}\right|^2 &\propto \sin(\theta_1 - \theta_2) \sin(\delta_1 - \delta_2) \end{aligned}$$

Weak phases from CKM, no first principle to calculate strong phases

What amplitudes do we talk about? How to calculate them?

$$\mathcal{H} \sim G_F \times \underbrace{(CKM)}_{V_{qb}V_{qs}^*} \times \underbrace{C(\mu)}_{WC} \times \underbrace{Q}_{4-f}$$

EFT with 4-fermi operators at $\sim \mathcal{O}(m_b) \ll m_W$.

- These are 4-fermi operators, but while QCD and EM do not differentiate between L and R fermions, weak does.
- All such short-distance corrections are dumped into the WCs.
- $\blacktriangleright \langle f | Q_i | B \rangle$ involves FF

Good job from Lattice, QCD SR, LCSR

Tree, Strong, and EW penguins BSM may involve more operators

Current-current:

$$Q_1 = (\bar{u}b)_{8,V-A}(\bar{s}u)_{8,V-A}, \quad Q_2 = (\bar{u}b)_{1,V-A}(\bar{s}u)_{1,V-A}$$

Strong penguin:

$$Q_{3(5)} = (\bar{s}b)_{1,V-A} \sum_{q} (\bar{q}q)_{1,V-(+)A}, \quad Q_{4(6)} = (\bar{s}b)_{8,V-A} \sum_{q} (\bar{q}q)_{8,V-(+)A}$$

EW penguin:

$$Q_{7(9)} = \frac{3}{2}(\bar{s}b)_{1,V-A} \sum_{q} e_q(\bar{q}q)_{1,V+(-)A}$$
$$Q_{8(10)} = (\bar{s}b)_{8,V-A} \sum_{q} e_q(\bar{q}q)_{8,V+(-)A}$$

$$\Delta A_{\rm CP} = A_{\rm CP}(B^+ \to \pi^0 K^+) - A_{\rm CP}(B^0 \to \pi^- K^+)$$

Expected to be close to zero in SM (we'll see why), and

 $\Delta A_{\rm CP} = 0.108 \pm 0.017 \text{ (LHCb)}$ = 0.112 ± 0.013 (Global av. after BelleII(21))

LHCb : 5.4 fb $^{-1}$ @ 13 TeV

[LHCb, PRL 2021, 2012.12789]

How serious is this?

 \Rightarrow AK, Patra, Roy, 2106.15633

$$\Delta A_{\rm CP} = A_{\rm CP}(B^+ \to \pi^0 K^+) - A_{\rm CP}(B^0 \to \pi^- K^+)$$

Expected to be close to zero in SM (we'll see why), and

 $\Delta A_{\rm CP} = 0.108 \pm 0.017 \text{ (LHCb)}$ = 0.112 ± 0.013 (Global av. after BelleII(21))

LHCb : 5.4 fb $^{-1}$ @ 13 TeV

[LHCb, PRL 2021, 2012.12789]

How serious is this?

 \Rightarrow AK, Patra, Roy, 2106.15633

Isospin amplitudes B is $I = \frac{1}{2}$, πK can be in $I' = \frac{1}{2}$ or $\frac{3}{2}$

$$\begin{split} \Delta I &= 1 \qquad A_{1/2} \ (I' = \frac{1}{2}) \ , \quad A_{3/2} \ (I' = \frac{3}{2}) \\ \Delta I &= 0 \qquad B_{1/2} \ (I' = \frac{1}{2}) \end{split}$$

$$\begin{split} A(B^+ \to \pi^+ K^0) &= B_{1/2} + A_{1/2} + A_{3/2} \,, \\ A(B^+ \to \pi^0 K^+) &= -\frac{1}{\sqrt{2}} \left(B_{1/2} + A_{1/2} \right) + \sqrt{2} A_{3/2} \,, \\ A(B^0 \to \pi^- K^+) &= -B_{1/2} + A_{1/2} + A_{3/2} \,, \\ A(B^0 \to \pi^0 K^0) &= \frac{1}{\sqrt{2}} \left(B_{1/2} - A_{1/2} \right) + \sqrt{2} A_{3/2} \,. \end{split}$$

Each with two indep. CKM combo, so 6 amplitudes and 5 strong phases

Neubert, JHEP 1999

Isospin amplitudes B is $I=\frac{1}{2}, \ \pi K$ can be in $I'=\frac{1}{2} \mbox{ or } \frac{3}{2}$

$$\begin{split} \Delta I &= 1 \qquad A_{1/2} \, \left(I' = \frac{1}{2} \right), \quad A_{3/2} \, \left(I' = \frac{3}{2} \right) \\ \Delta I &= 0 \qquad B_{1/2} \, \left(I' = \frac{1}{2} \right) \end{split}$$

$$\begin{split} A(B^+ \to \pi^+ K^0) &= B_{1/2} + A_{1/2} + A_{3/2} \,, \\ A(B^+ \to \pi^0 K^+) &= -\frac{1}{\sqrt{2}} \left(B_{1/2} + A_{1/2} \right) + \sqrt{2} A_{3/2} \,, \\ A(B^0 \to \pi^- K^+) &= -B_{1/2} + A_{1/2} + A_{3/2} \,, \\ A(B^0 \to \pi^0 K^0) &= \frac{1}{\sqrt{2}} \left(B_{1/2} - A_{1/2} \right) + \sqrt{2} A_{3/2} \,. \end{split}$$

Each with two indep. CKM combo, so 6 amplitudes and 5 strong phases

Neubert, JHEP 1999

Topological amplitudes

Fleischer, Mannel, Gronau, Rosner, Neubert, 1998

Colour-allowed tree (**T**), $b \rightarrow u\bar{u}s$, comes as $\lambda_u T$, with $\lambda_u = V_{us}V_{ub}^* \sim \lambda^4$ $\lambda \approx 0.22$ is the smallness parameter

Colour-suppressed tree (C), same as T but $1/N_c$ suppressed

Annihilation (A) – much suppressed compared to T or C

Penguin – further subdivided into strong penguin (P) and EW penguin (P $_{\rm EW})$

More ornithology:

 $\begin{array}{ll} \mbox{Strong penguins} & \Rightarrow & P = \lambda_u P_u + \lambda_c P_c + \lambda_t P_t & & \lambda_q = V_{qs} V_{qb}^* \\ \mbox{But } \lambda_u + \lambda_c + \lambda_t = 0, \mbox{ so} & & \end{array}$

$$P = \lambda_u (P_u - P_c) + \lambda_t (P_t - P_c) \equiv \lambda_u P_{uc} + \lambda_t P_{tc}$$

We expect a hierarchy $\sim \mathcal{O}(\lambda)$

$$|\lambda_t P_{tc}| > |\lambda_u T| > |\lambda_u C| > |\lambda_u A|, |\lambda_u P_{uc}|$$

Two types of EW penguin amplitudes too: P_{EW} (Col.A) and P_{EW}^C (Col.S) SU(3) flavour symmetry relates EWP with tree amplitudes.

Ornithology continued:

$$\mathcal{H} = \frac{G_F}{\sqrt{2}} \left[\lambda_u \underbrace{\left(C_1\left(\overline{b}u\right)\left(\overline{u}s\right) + C_2\left(\overline{b}s\right)\left(\overline{u}u\right)\right)}_{(V-A)\otimes(V-A)} - \lambda_t \sum_{i=3}^{10} C_i Q_i \right] \right]$$

 $Q_{1-2}:$ tree, $\ \ Q_{3-6}:$ strong penguin, $\ \ Q_9, \ Q_{10}:$ non-negligible EWP

$$\begin{split} P_{EW} \pm P_{EW}^C &= -\frac{3}{2} \, \frac{C_9 \pm C_{10}}{C_1 \pm C_2} \, (T \pm C) \,. \qquad (\text{Neubert, Rosner, 1998}) \\ \text{At LL, } q^2 &= m_b^2 \\ P_{EW} &\sim \kappa T \,, \qquad P_{EW}^C \sim \kappa C \,, \\ \kappa &= -\frac{3}{2} \, \frac{C_9 + C_{10}}{C_1 + C_2} \simeq -\frac{3}{2} \, \frac{C_9 - C_{10}}{C_1 - C_2} \simeq 0.0135 \pm 0.0012 \,. \end{split}$$

Only within SM !

In terms of the topological amplitudes, dominant, subdominant, and negligible

$$\begin{split} \underbrace{\mathcal{A}_{\pi^-K^+}^{-+}}_{\pi^-K^+} &= -\lambda_u \left(P_{uc} + T \right) - \lambda_t \left(P_{tc} + \frac{2}{3} P_{EW}^C \right) \,, \\ \mathcal{A}^{+0} &= \lambda_u \left(P_{uc} + A \right) + \lambda_t \left(P_{tc} - \frac{1}{3} P_{EW}^C \right) \,, \\ \sqrt{2} \mathcal{A}^{00} &= \lambda_u \left(P_{uc} - C \right) + \lambda_t \left(P_{tc} - P_{EW} - \frac{1}{3} P_{EW}^C \right) \,, \\ \sqrt{2} \mathcal{A}^{0+} &= -\lambda_u \left(T + C + P_{uc} + A \right) - \lambda_t \left(P_{tc} + P_{EW} + \frac{2}{3} P_{EW}^C \right) \end{split}$$

 $A_{\rm CP}$ comes from $T-P_{tc}$ interference T and P_{EW} carry the same strong phase, related by κ

So we expect

Depends on neglect of C. Is C negligible?

Another potential observable (~ 0 in SM)

$$\Delta_{4} = A_{\rm CP}(\pi^{-}K^{+}) + A_{\rm CP}(\pi^{+}K^{0})\frac{\mathcal{B}(\pi^{+}K^{0})\tau_{0}}{\mathcal{B}(\pi^{-}K^{+})\tau_{+}} - A_{\rm CP}(\pi^{0}K^{+})\frac{2\mathcal{B}(\pi^{0}K^{+})\tau_{0}}{\mathcal{B}(\pi^{-}K^{+})\tau_{+}} - A_{\rm CP}(\pi^{0}K^{0})\frac{2\mathcal{B}(\pi^{0}K^{0})}{\mathcal{B}(\pi^{-}K^{+})\tau_{+}}$$

Not entirely unexpected

 $B \rightarrow \pi \pi$, $B \rightarrow \pi K$ known to be troublesome, related by SU(3)

Hints of possible large EW penguin \implies BSM ! Nandi and AK, 2004

Large C

Not entirely unexpected

 $B \to \pi \pi, B \to \pi K$ known to be troublesome, related by SU(3)

Hints of possible large EW penguin \implies BSM ! Nandi and AK, 2004

Large C

$$\begin{split} \tau & |C/T| \leq 0.5 \text{ is still allowed in SM, but not large EWP} \\ \bullet & \text{Large EWP} \Rightarrow \kappa > \kappa_{\text{SM}}, \text{ maybe there are two different } \kappa \text{s} \\ \implies & \kappa_1 = P_{EW}/T, \, \kappa_2 = P_{EW}^C/C, \, \text{beyond-SM} \end{split}$$

Not entirely unexpected

 $B \to \pi \pi, B \to \pi K$ known to be troublesome, related by SU(3)

Hints of possible large EW penguin \implies BSM ! Nandi and AK, 2004

Large C

• $|C/T| \le 0.5$ is still allowed in SM, but not large EWP

² Large EWP
$$\Rightarrow \kappa > \kappa_{SM}$$
, maybe there are two different κs
 $\implies \kappa_1 = P_{EW}/T$, $\kappa_2 = P_{EW}^C/C$, beyond-SM

Also cross-check with frequentist

- Take all data on BR and A_{CP}, no averaging.
- Check for a "good" fit in the "SM-like" region.

What is a good fit? Which region is SM-like? ?"What is meant by "no averaging

Also cross-check with frequentist

- Take all data on BR and A_{CP}, no averaging.
- Check for a "good" fit in the "SM-like" region.

What is a good fit? Which region is SM-like? What is meant by "no averaging"?

Modes	Expt.	${ m BR}~[10^{-6}]$	Expt.	$A_{\rm CP}$	$S_{ m CP}$
	BaBar [5]	19.1(6)(6)	BaBar [9]	$-0.107(16)\binom{6}{4}$	
$B^0 \to \pi^- K^+$	Belle [11]	20.00(34)(60)	Belle [11]	-0.069(14)(7)	
	CLEO [74]	$18.0(^{23}_{21})(^{12}_{9})$	CDF [75]	-0.083(13)(4)	
			LHCb [13]	-0.084(4)(3)	
			LHCb [14]	-0.0824(33)(33)	
	Belle-II [<u>15</u>]	18.0(9)(9)	Belle-II $[15]$	-0.16(5)(1)	
	BaBar [7]	13.6(6)(7)	BaBar [7]	0.030(39)(10)	
$B^+ \to \pi^0 K^+$	Belle [11]	12.62(31)(56)	Belle [11]	0.043(24)(2)	
	CLEO [74]	$12.9(^{24}_{22})(^{12}_{11})$	LHCb [18]	0.025(15)(6)	
	Belle-II [<u>16</u>]	$11.9(^{11}_{10})(^{16}_{11})$	Belle-II [<u>16</u>]	-0.09(9)(3)	
	BaBar [6]	23.9(11)(10)	BaBar [6]	-0.029(39)(10)	
$B^+ \to \pi^+ K^0$	Belle [11]	23.97(53)(71)	Belle [11]	-0.011(21)(6)	
	CLEO [74]	$18.8(^{37}_{33})(^{21}_{18})$	LHCb [12]	-0.022(25)(10)	
	Belle-II [15]	$21.4(^{23}_{22})(16)$	Belle-II [15]	-0.01(8)(5)	
	BaBar [9]	10.1(6)(4)	BaBar [8, 76]	-0.13(13)(3)	0.55(20)(3) [8, 76]
$B^0 \to \pi^0 K^0$	Belle [10]	8.7(5)(6)	Belle [10, 76]	0.14(13)(6)	0.67(31)(8) [10, 76]
	Belle [11]	9.68(46)(50)			
	CLEO [74]	$12.8(^{40}_{33})(^{17}_{14})$			
	Belle-II [17]	$8.5(^{17}_{16})(12)$	Belle-II [17]	$-0.40(^{46}_{44})(4)$	

Free parameters:

- $P_{tc}\text{, }\left|T\right|\text{, }\left|C\right|\text{, }\left|A\right|\text{, }\left|P_{uc}\right|$
- Relative phases w.r.t. P_{tc} : δ_T , δ_C , δ_A , $\delta_{P_{uc}}$
- κ as a normal prior or a free parameter

10 free parameters

 \blacktriangleright CKM elements, and $\beta,\,\gamma$ taken as theoretical inputs from HFLAV, with their uncertainties

 $\blacklozenge~|A|$ and $|P_{uc}|$ are suppressed, so should not have much effect on the fits. Same for their associated phases δ_A and $\delta_{P_{uc}}$

Different fits (all $\delta s \in \{0, 2\pi\}$) :

Investigation Naive:

 $0 \leq \kappa \leq 0.03 \,, \ \ -0.3 \leq P_{tc} \leq 0 \,, \ \ 0 \leq |T| \leq 0.5 \,, \ \ 0 \leq |C| \leq 0.1$

No acceptable fit, p < 1%. Same for higher-order with 4 extra parameters

 $0 \le |A| \le 0.01 \,, \ \ 0 \le |P_{uc}| \le 0.01$

SM-like:

Order-2, with P_{tc} , |T|, |C|, δ_T , δ_C , and |C| < |T|/2(i) κ taken as a normal prior 0.014 ± 0.006 (ii) κ as a free parameter

Different fits (all $\delta s \in \{0, 2\pi\}$) :

Investigation Naive:

 $0 \leq \kappa \leq 0.03 \,, \ \ -0.3 \leq P_{tc} \leq 0 \,, \ \ 0 \leq |T| \leq 0.5 \,, \ \ 0 \leq |C| \leq 0.1$

No acceptable fit, p < 1%. Same for higher-order with 4 extra parameters

 $0 \le |A| \le 0.01, \quad 0 \le |P_{uc}| \le 0.01$

² SM-like: Order-2, with P_{tc} , |T|, |C|, δ_T , δ_C , and |C| < |T|/2. (i) κ taken as a normal prior 0.014 ± 0.006 (ii) κ as a free parameter

BSM:

 κ free, maybe two κ s

Different fits (all $\delta s \in \{0, 2\pi\}$) :

Naive:

 $0 \leq \kappa \leq 0.03 \,, \ \ -0.3 \leq P_{tc} \leq 0 \,, \ \ 0 \leq |T| \leq 0.5 \,, \ \ 0 \leq |C| \leq 0.1$

No acceptable fit, p < 1%. Same for higher-order with 4 extra parameters

 $0 \le |A| \le 0.01, \ 0 \le |P_{uc}| \le 0.01$

SM-like: Order-2, with P_{tc}, |T|, |C|, δ_T, δ_C, and |C| < |T|/2.
(i) κ taken as a normal prior 0.014 ± 0.006
(ii) κ as a free parameter

BSM:

$$-0.3 \le P_{tc} \le 0, \quad 0 \le |T|, |C| \le 1$$

 κ free, maybe two $\kappa {\rm s}$

More on the "SM-like" region:

Parameters	Priors		Complex κ			
		SM (κ Prior)			κ Free	
		V Order-2	Order-3	$V_{Order-2}$	Order-3	Order-2
κ	0.014(6)	$0.0210(^{44}_{43})$	$0.0210 \binom{44}{43}$	$0.028(^{41}_{14})$	$0.029 \binom{47}{14}$	$0.048(^{80}_{28})$
P_{tc}	-	$-0.1524(^{62}_{65})$	$-0.1524(^{61}_{66})$	$-0.1551(^{66}_{69})$	$-0.1548(^{72}_{70})$	$-0.1534(^{78}_{74})$
$ \mathbf{T} $	-	$0.486(^{11}_{22})$	$0.486(^{11}_{22})$	$0.49(^{28}_{15})$	$0.49^{(29)}_{(16)}$	$0.68(^{22}_{24})$
$ \mathbf{C} $	-	$0.23(^{11}_{18})$	$0.23(^{12}_{18})$	$0.454(^{150}_{83})$	$0.471(^{166}_{94})$	$0.58(^{22}_{16})$
δ_{κ}	-	-	-	-	-	$0.70(^{71}_{50})$
$ \mathbf{A} $	-	-	$0.0051(\substack{34\\35})$	-	$0.047(^{35}_{32})$	-
$ P_{ m uc} $	-	-	0.0050(34)	-	$0.049(^{35}_{33})$	

There is an acceptable SM-like fit

But more best-fit regions for BSM.

So, SM or BSM?

 Δ_4 is not yet that precise

SM-like fits have tension with $\Delta A_{\rm CP}$ but at about 3σ Large κ means something's wrong with EWP \implies BSM?

JNIVERSITY OF

So, SM or BSM?

 Δ_4 is not yet that precise

SM-like fits have tension with $\Delta A_{\rm CP}$ but at about 3σ Large κ means something's wrong with EWP \implies BSM?

