

- \blacktriangleright Lepton-flavor violating(LFV) decay is strongly forbidden in SM.
- However, it is not necessarily protected if leptonflavor universality(LFU) is violating.

Anomalies 2020 @ IIT Hyderabad (online)

Signal

BG

- Both BB pair SL decay
 - $B \rightarrow D^{(*)}XI^+v$ followed by $D^{(*)} \rightarrow XI^-v$
- Hadronic decay with miss-ID

PRD98,071101(R)(2018)

- Using Belle full dataset (772M BB pairs)
- Neural netowork cut is applied qq and BB separately.
- > Vetoes are applied to suppress K/π miss-ID BG.
 - Invariant masses of $\ell^+\ell^-$, K⁺e⁻, and $\pi^-\mu^+$.
- > Control sample : $B^{O} \rightarrow K^{*O}J/\psi$.
- > BR upper limits (90% C.L.) :
 - $BR(B^0 \to K^{*0} \mu^+ e^-) < 1.2 \times 10^{-7}$
 - $BR(B^0 \to K^{*0} \mu^- e^+) < 1.6 \times 10^{-7}$
 - $BR(B^0 \rightarrow K^{*0} \mu^{\pm} e^{\mp}) < 1.8 \times 10^{-7}$

The stringent

constraints were set

PRL123,241802(2019) (LHCb) arXiv:1908.01848v1 (Belle)

Anomalies 2020 @ IIT Hyderabad (online)

Mode	Upper limit of BR
$B^+ {\longrightarrow} K^+ \tau \mu$	<4.8x10 ⁻⁵ (BaBar)
$B^+ \rightarrow K^+ \tau e$	<3.0x10 ⁻⁵ (BaBar)
$B^+ \rightarrow K^+ \tau^+ \mu^-$	<3.9x10 ⁻⁵ (LHCb)

- > The anomalies of $R(K^{(*)})$ indicates the NP effect appears more in μ than e.
 - \rightarrow NP search with $\tau\,(3^{rd})$ is very important
- > BR~O(10⁻⁶) is the target.
- The analysis is more challenging because of missing particle from τ decay.
 - The most standard way is tagging method
 - (FEI = tagging package for Belle II).
 - Observable : $\underline{\tau}$ invariant mass as a recoil information.

						Lepton mode
$\tau \rightarrow \mu$	#	Ratio	τ→e	#	Ratio	
D0 mu nu	101	36.1%	D0 e nu	203	36.2%	50
D*0 mu nu	71	25.4%	D*0 e nu	156	27.9%	0° €
J/ψ K π ⁰ π ⁰	23	8.2%	Mixed origin	65	11.6%	$B^+ \longleftarrow \ell^+$
Mixed origin	16	5.7%	D0 e nu gam	24	4.3%	
ψ (2S) K ^{*+}	10	3.6%	D*0 e nu gam	15	2.7%	ν
$\tau { ightarrow} \pi$	#	Ratio	$\tau \rightarrow ho$	#	Ratio	Hadron modes
Mixed origin	128	13.5%	rho D0	121	15.2%	
D*0 rho	89	9.4%	D*0 rho	120	15.1%	$D^0 \leq$
D*0 pi	88	9.3%	Mixed origin	112	14.1%	R+
rho D0	84	8.8%	D*0 a_1	52	6.6%	
D0 pi	67	7.1%	a_1 D0	21	2.6%	$\sim \pi^+/($

* The number of events are scaled to 1 stream.

 \succ The main BG is D^ol_V and D^oh.

 \succ A dedicated MVA (FBDT) will be trained for BB sup.

Kinematic cut

- τ prong momentum at τ rest frame for hadronic modes ($\tau \rightarrow \pi/\rho$ modes).
- \succ <u>J/ ψ veto</u>
 - Invariant mass of primary μ and au prong for J/ ψ veto.

- KSFW (modified Fox-Wolfram moments) input parameters.
- \succ µID of primary muon.
- > Distance b/w primary kaon and muon.

2020tC12

 $\succ \cos\theta$

Azetc.

Fitting condition

- Signal : CBS+Gaussian
- BG: 3rd order Chebyshev polynomial
- > Signal shapes will be fixed by MC.
- \succ BG shapes (cO, c1, and c2) are all floated.

Sensitivity study

> Toy-MC studies are repeated for several BR assumptions.

Sensitivity estimation

- A good linearity can be seen between input/output BR.
 - No bias
 - Pull distributions are also OK
- According to O-signal case, BR<1.8×10⁻⁵ (95% C.L.) is possible.
 - Only statistical uncertainty is taken into account.
- > Possibly will be improved.
 - Cut optimization, simultaneous fit for each τ channels, other tagging techniques, ...
 - $O(10^{-6})$ level will be achieved at Belle II.

- Recent anomalies related with R(K(*)) indicates lepton flavor universality violation (LFUV).
- > Many NP models allows LFV if LFUV exists.
 - B \rightarrow KII' is possible LFV mode
 - BR(B \rightarrow K^(*)µe) upper limits were set by Belle and LHCb (10⁻⁹ for K⁺ mode, 10⁻⁷ for K_s mode, 90% C.L.).
- > BR(B⁺ \rightarrow K⁺ $\tau\mu$ (e)) is interesting if NP contributes 3rd generation more.
 - The analysis is more challenging because of v.
 - $O(10^{-6})$ is preferred by leptoquark scenario.
- > $BR(B \rightarrow K^+ \tau^+ \mu^-) < 1.8 \times 10^{-5}$ (stat. only, 95% C.L.) is estimated according to MC simulation for Belle.
- > Other channels $(B \rightarrow K^+ \tau^- \mu^+, B \rightarrow K^+ \tau e)$ are being studied as well.

- $> B_{s2}^{*0} \rightarrow B^+ K^-, B^+ \rightarrow K^+ \mu^- \tau^+$
- \blacktriangleright High quality tracks K⁺ and μ^{-} are selected, not associated with any PV.
- > An additional track from t is selected whose charge is opposite against m.
- > B^+ direction is decided from secondary $K^+\mu^-$ vertex and PV, from where K^- (opposite charge against signal decay K^+) also originates.
- \succ E_B solution can be evaluated assuming a kinematic information.
- \succ In signal kinematics, \mathcal{M}_{miss} has a characterized distribution.

