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Motivation: Looking at VBF Higgs through a CNN



Vector Boson Fusion: A unique signature

» t-channel production of color-singlet
particles via fusion of two
vector-bosons

> No central jet activity

> Large rapidity gap between two jets

» Large invariant mass of the two jet
system

» Decay products at the central region
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uncertainty

» Very important for BSM searches of color singlet particles.
» Dominant production channel for heavy Higgs at hadron colliders

» Central-jet veto:viable to search for lighter Higgs masses
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Vector Boson Fusion: A unique signature

» t-channel production of color-singlet
particles via fusion of two

vector-bosons 10 °
S
» No central jet activity 0 \>
> Large rapidity gap between two jets o4

» Large invariant mass of the two jet
system
» Decay products at the central region

VBF production of m, = 125 GeV Higgs
» Second highest cross-section after gluon-fusion
» Very clean channel for non-hadronic decay of the Higgs

» Most sensitive channel for searching invisible decay of Higgs
(Important in many BSM scenario)
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Vector Boson Fusion: A unique signature

» t-channel production of color-singlet
particles via fusion of two

vector-bosons ~10 o<
> ) o — >
No central jet activity 0 >6
> Large rapidity gap between two jets o4

» Large invariant mass of the two jet
system
» Decay products at the central region

Collider bounds on invisible branching ratio of Higgs much higher
than in SM!!

New techniques to reduce the upper limit: Deep learning??



CNNs and jet-images: why do they work?

Jet-image of a boosted top-quark
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CNNs and jet-images: why do they work?

» Efficiently distinguishes large
radius QCD jets from decays of
boosted heavy particles
(t, W*/Z°/1°)

» Works with data which have an
underlying Euclidean-geometry
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» Efficiently distinguishes large

radius QCD jets from decays of
boosted heavy particles
(t, W*/Z°/1°)

» Works with data which have an

underlying Euclidean-geometry

Jet-substructure variables are
mostly functions of the
Euclidean distance

AR} =, /An,?j + AQS,?J- in the

(n, ¢) plane, for instance:

ECFR.8) = S pid (AR;)

ij<ied

CNNs and jet-images: why do they work?
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Tower-Image

VBF Higgs signal — i Z(vo)+ Jets(from QCD vertex) — ;‘
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Salient underlying event structure in Vector-boson fusion(VBF): no color
exchanged at LO
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Tower-Image

VBF Higgs signal — i Z(vo)+ Jets(from QCD vertex) — ;‘

Salient underlying event structure in Vector-boson fusion(VBF): no color
exchanged at LO

Can CNNs leverage information from the full calorimeter tower?
Turns out, we can!
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Search for Invisible decays of Higgs at LHC

> Higgs does not couple to v in SM, couples to dark-matter in many
BSM models

» Most recent ATLAS preliminary result® puts upper limit on
B.R(h —inv) < 0.13 at 95% confidence level with £ = 140 fb~1.

2ATLAS-CONF-2020-008
bPhys. Lett. B 793 (2019) 520 [1809.05937]
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Search for Invisible decays of Higgs at LHC

> Higgs does not couple to v in SM, couples to dark-matter in many
BSM models

» Most recent ATLAS preliminary result® puts upper limit on
B.R(h —inv) < 0.13 at 95% confidence level with £ = 140 fb~1.

» Reproduced the shape-analysis of CMS result? in our setting, for
better comparison of increased sensitivity

» deliberately weaken cuts in |Anj;| and mj
=Two signals: Sew (VBF) and Sqcp (Gluon-fusion)

> We consider the following major backgrounds:
> Zocp: Z(vp) + jets
> Wocp: WE(IEv) + jets
» Zrw : VBF production of Z(vD) + 2 jets
> Weyw :VBF production of WE(I£v) + 2 jets

2ATLAS-CONF-2020-008
bPhys. Lett. B 793 (2019) 520 [1809.05937]
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Pre-selection cuts

> VBF Jet tag: At least two jets with leading(sub-leading) jet
pr > 80 (40) GeV with |n| < 4.7. At least one of the jets to have
|77ji| <3

nynp <0, |Agyl <15, [Any>1 , my > 200 GeV

> Lepton-veto: No electron(muon) with pr > 10 GeV in the central
region, |n| < 2.5(2.4).

» Photon-veto: No photon with pr > 15 GeV in the central region,
In] < 2.5

> 7 and b-veto: no tau-tagged jets in |n| < 2.3 with pr > 18 GeV,
and no b-tagged jets in |n| < 2.5 with pr > 20 GeV.

> Missing £7(MET): MET > 200 GeV (250 GeV for CMS
shape-analysis)

> MET jet alignment: min(A¢(BYET, Br)) > 0.5 for upto four
leading jets with pr > 30 GeV with |n| < 4.7.



Data-representation: high-level and low-level features



Low-level: Tower-image
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> Pixel wise calorimeter energy deposits (E1) converted into pictorial
description like ‘tower-images' as input to Convolutional Neural
Networks



Low-level: Tower-image
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» Different resolution of calorimeter towers in central and forward
regions
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Low-level: Tower-image
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Low-level: Tower-image
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> Bin-size: High-resolution(HR) 0.08 x 0.08 and a
low-resolution(LR): 0.17 x 0.17, n € (=5,5) and ¢ € (—m, )

» Padding: padded at each ¢-boundary with rows from the opposite
boundary.

> Size LR: 59 x 45, and HR: 125 x 95.
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High-level features: Event kinematics and QCD radiation

» Kinematic: Information about the event-kinematics from
reconstructed objects
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High-level features: Event kinematics and QCD radiation

» Kinematic: Information about the event-kinematics from
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» Radiative: Contains information about the QCD radiation pattern.
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E: set of chosen 7¢'s.
Vary n¢ uniformly in the interval [1,5] to get 16 H7¢ variables.



High-level features: Event kinematics and QCD radiation

» Kinematic: Information about the event-kinematics from
reconstructed objects

K= ( |A77jj|a ‘Afbjﬂ , My, MET , ¢meT , A@ZSJ/.\I//ET , A‘ZSJ/.\ZﬂET » A¢JR4+EJ% )

» Radiative: Contains information about the QCD radiation pattern.

R=(HfInce€) , HF =Y Er
n<|ncl
E: set of chosen 7¢'s.

Vary n¢ uniformly in the interval [1,5] to get 16 H7¢ variables.

» Combined high-level feature space: H
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Low-level: Event-preprocessing
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» Rotate along z-axis such that ¢g = 0.
Two instances of ¢ € {PmeT, D), }-

> Reflect along the xy-plane, such that the leading jet's 7 is always
positive.



Low-level: Event-preprocessing
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» Rotate along z-axis such that ¢g = 0.
Two instances of ¢ € {PmeT, D), }-

> Reflect along the xy-plane, such that the leading jet's 7 is always
positive.

> After binning (E7) and padding in LR and HR : PR, PHR. PLR
and PHR



Low-level: Event-preprocessing
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Network Performance



Receiver Operator Characteristics(ROC)
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Receiver Operator Characteristics(ROC)

0.35 Xo=0.0 xo=112 | Xx=2.25 | x=3.38 | x=4.5 m— Signal
77 t i Background
0.30 % i 20.2
1 i 19 Xo =Threshold
0.25 ‘ ! % Sg accepted
% Bg accepted
X
% K 0.20

==

4 5 6

Quantification of classification power: ROC = Area Under Curve(AUC)

Low-level: 77,%,,%7—, 'P,\",;'ET, 'PjR and ’Pj’R = CNNs

High-level: KC(kinematic), R(QCD-radiative) and H(combination of the
two previous spaces)=- densely connected ANNs



Network Performance
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Network Performance: Channel-wise outputs

3| 7"-CNN , H-ANN
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Network Performance: Channel-wise outputs

3 PIHR -CNN Signal

72 Sew W Soco ~+ Val

3 Background
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» Harder to distinguish Sgcp from the QCD dominated (~ 95%)
background class (significant Sqcp contamination in traditional
analysis too)



Network Performance: Channel-wise outputs

3| 7"-CNN , H-ANN
Signal Background

{7} 7 I
V2 Sew W Soco Val 3 -z, . W
—— W Wocp + val

» Harder to distinguish Sgcp from the QCD dominated (~ 95%)
background class (significant Sqcp contamination in traditional
analysis too)

» For the CNN, Wgcp dominates over Zgcp in the first bin??



Network Performance: Channel-wise outputs

3 PIHR'CNN Signal

3 Background

L) o +

U272 Sew W Soco Val -7 -y
. W Wocp + val

» Harder to distinguish Sgcp from the QCD dominated (~ 95%)
background class (significant Sqcp contamination in traditional
analysis too)

» For the CNN, Wgcp dominates over Zgcp in the first bin??
= Presence of calorimeter deposits of lepton in regions || > 2.5 or
in the central regions when it is misidentified (including 7).



Result: Bounds on invisible branching ratio of Higgs



Bounds on B.R(h° — inv)

Reproduced CMS result at 36 fb™l (actual : BR < 0.25)
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95 % C.L upper limit on BR(h°

MET > 250 GeV. MET > 200 GeV

Expected 95% C.L median upper limit on the invisible branching ratio of
SM Higgs with one and two sigma sidebands.
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Bounds on B.R(h® — inv)

Expected median
SI.No Name Description upper-limit
on B.R(h° — inv)
L=36fb""|L=140fb"1 | L=300fb!

1. mj(MET > 250 GeV) reproduced CMS shape analysis 0.226fg:g%§ 04165132?,55% 0A13Ofg'.gg$
2. |An|(MET > 250 GeV) | |Any| analysis with CMS shape-cuts | 0.20073%82 | 0.128%3%9 | 0.106%3%¢
3. mji(MET > 200 GeV) | mj shape analysis with weaker cut 019179973 | 01167397 | 0.10173.%7
4. | An;|(MET > 200 GeV) | Anj| analysis with weaker cut ‘ 0.162799% 0.105199%2 0.087-9.93¢
5. PLR-CNN Low-Resolution, ¢o = ¢, 0.07873%3% | 0.051439% | 0.045391
6. PHR.CNN High-Resolution, ¢ = ¢, 0.070%5:%27 | 0.0437%%17 | 0.035795%
7. PLR-CNN Low-Resolution, ¢o = pmer 0.09255937 | 0.0629%%4 | 0.053799%
8. PHR-CNN High-Resolution, ¢o = dmer 0.08679%% | 0.058199% | 0.05178:%20
9. KC-ANN 8 kinematic-variables 0.101%9%2 | 0.075+3%) 0.06319:%27
10. R-ANN 16 radiative H7< variables 0.13873%%5 | 0.0941353% | 0.07973%32
11. H-ANN Combination of K and R variables ~ 0.094733% | 0.0651392% | 0.05778%32
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10. R-ANN 16 radiative H7< variables 0.13873%%5 | 0.0941353% | 0.07973%32
11. H-ANN Combination of K and R variables ~ 0.094733% | 0.0651392% | 0.05778%32

» factor of three improvement, utilising the same amount of

data.
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9. KC-ANN 8 kinematic-variables 0.101%9%2 | 0.075+3%) 0.06319:%27
10. R-ANN 16 radiative H7< variables 0.13873%%5 | 0.0941353% | 0.07973%32
11. H-ANN Combination of K and R variables ~ 0.094733% | 0.0651392% | 0.05778%32

» factor of three improvement, utilising the same amount of

data.

» It can constrain many different BSM models severely.




Bounds on B.R(h® — inv)

Expected median
SI.No Name Description upper-limit
on B.R(h° — inv)
L=36f"1|L=140fb"1 | L=300fb"!

1. mj(MET > 250 GeV) reproduced CMS shape analysis 0.226fg:g%§ 04165fg:g55§ 0A130fg"gg$
2. |An|(MET > 250 GeV) | |Any| analysis with CMS shape-cuts | 0.20073%82 | 0.128%3%9 | 0.106%3%¢
3. mji(MET > 200 GeV) | mj shape analysis with weaker cut 019179973 | 01167397 | 0.10173.%7
4. | An;|(MET > 200 GeV) | Anj| analysis with weaker cut ‘ 0.162799% 0.105199%2 0.087-9.93¢
5. PLR-CNN Low-Resolution, ¢o = ¢, 0.07873%3% | 0.051439% | 0.045391
6. PHR-CNN High-Resolution, ¢o = ¢;, 0.0707%%7 | 0.043%3%7 | 0.035%391
7. PLR-CNN Low-Resolution, ¢o = pmer 0.09255937 | 0.0629%%4 | 0.053799%
8. PHR-CNN High-Resolution, ¢o = dmer 0.08679%% | 0.058199% | 0.05178:%20
9. KC-ANN 8 kinematic-variables 0.101%9%2 | 0.075+3%) 0.06319:%27
10. R-ANN 16 radiative H7< variables 0.13873%%5 | 0.0941353% | 0.07973%32
11. H-ANN Combination of K and R variables ~ 0.094733% | 0.0651392% | 0.05778%32

» factor of three improvement, utilising the same amount of

data.

» It can constrain many different BSM models severely.




Bounds on B.R(h® — inv)

Expected median
SI.No Name Description upper-limit
on B.R(h° — inv)
L=36f"1|L=140fb"1 | L=300fb"!

1. mj(MET > 250 GeV) reproduced CMS shape analysis 0.226fg:g%§ 04165fg:g55§ OAISOfg"ggg
2. |An|(MET > 250 GeV) | |Any| analysis with CMS shape-cuts | 0.20073%82 | 0.128%3%9 | 0.106%3%¢
3. mji(MET > 200 GeV) | mj shape analysis with weaker cut 019179973 | 01167397 | 0.10173.%7
4. | An;|(MET > 200 GeV) | Anj| analysis with weaker cut ‘ 0.162799% 0.105199%2 0.087-9.93¢
5. PLR-CNN Low-Resolution, ¢o = ¢, 0.07873%3% | 0.051439% | 0.045391
6. PHR-CNN High-Resolution, ¢o = ¢;, 0.0707%%7 | 0.043%3%7 | 0.035%391
7. PLR-CNN Low-Resolution, ¢o = pmer 0.09255937 | 0.0629%%4 | 0.053799%
8. PHR-CNN High-Resolution, ¢o = dmer 0.08679%% | 0.058199% | 0.05178:%20
9. KC-ANN 8 kinematic-variables 0.101%9%2 | 0.075+3%) 0.06319:%27
10. R-ANN 16 radiative H7< variables 0.13873%%5 | 0.0941353% | 0.07973%32
11. H-ANN Combination of K and R variables ~ 0.094733% | 0.0651392% | 0.05778%32

> Pileup increases the upper-limit within 1o errors for PHR-CNN.



Conclusion

» Posibility to replace decades old dependence on central-jet veto for
the reduction of non-VBF backgrounds, in the meantime gaining
significantly in performance.

» Low-level calorimeter image outperforms high-level physics
motivated features.

» High-level variables need reconstruction of events.
= Feasibility of CNN/ANN triggers for VBF?

» Minimally affected by pileup even without any mitigation.
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Event simulation details

» Modified version of Higgs Effective Field
theory model
= Higgs decays at parton level to two scalar
dark matter particles for signal

» Finite top-mass: Reweight the Missing
E+(MET) distribution

» After preselection cuts: unweighted for Neural
Network training

» Parton level cross-sections matched upto 4
and 2 jets for Zgcp and Wicep, respectively

Madgraph5_aMC@NLO

Parton level simulation

Parton shower and

‘ Pythia 8
hadronisation

Delphes 3

Fast detector simulation



Details of data used in analysis

» Signal and background classes formed by mixing the channels with
the expected proportions: k X 0 X €paseline
» Shape-analysis(MET > 250 GeV):
» Signal: 39% Sgw and the 61% Socp
> Background: 54.43% ZQCD , 40.92% WQCD, 3.05% ZEW and 1.58%
Wew
» Expected number of background events at 36 fb~! integrated
luminosity, scaled for other luminosities.
> Neural Network analysis(MET > 200 GeV):
» Signal: 44.8% Sgw and the 55.2% Socp
> Background: 51.221% ZQCD , 44.896% WQCDy 2.295% ZEW and
1.587% Wew
» 100,000 training and 25,000 validation events for each class
» Models completely agnostic to validation data
» Further statistical analysis uses validation data scaled by different
luminosities.

» Performed shape-analysis for MET > 200 GeV, for a better
comparison.



High-level features: Kinematic
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High-level features: QCD-Radiative
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Brief detail of networks

&-ANN Architecture

CNN Architecture .’ﬂ ___________ N
. '
' '
' l
' '

True

Low-level High-level

» After training for 20-1000 epochs, best performing network on the
validation data choosen (for each of the 7 networks).

» ANN architectures are inspired by the information bottleneck
principle, closely related to coarse-graining in RG evolution.



	Motivation: Looking at VBF Higgs through a CNN
	Invisible Higgs search at LHC
	Data-representation: high-level and low-level features
	Preprocessing
	Network Performance
	Result: Bounds on invisible branching ratio of Higgs
	Back-up

