A deep (learning) insight into invisible Higgs search through Vector Boson Fusion

Vishal S. Ngairangbam

Physical Research Laboratory

September 12, 2020

Based on: arxiv:2008.05434 (with A. Bhardwaj, P. Konar, A. K. Nayak)

Outline

Motivation: Looking at VBF Higgs through a CNN

Invisible Higgs search at LHC

Data-representation: high-level and low-level features

Preprocessing

Network Performance

Result: Bounds on invisible branching ratio of Higgs

Back-up

Motivation: Looking at VBF Higgs through a CNN

Invisible Higgs search at LHC

Data-representation: high-level and low-level features

Preprocessing

Network Performance

Result: Bounds on invisible branching ratio of Higgs

Back-up

- t-channel production of color-singlet particles via fusion of two vector-bosons
 - No central jet activity
 - Large rapidity gap between two jets
 - Large invariant mass of the two jet system
 - Decay products at the central region

- t-channel production of color-singlet particles via fusion of two vector-bosons
 - No central jet activity
 - Large rapidity gap between two jets
 - Large invariant mass of the two jet system
 - Decay products at the central region

- t-channel production of color-singlet particles via fusion of two vector-bosons
 - No central jet activity
 - Large rapidity gap between two jets
 - Large invariant mass of the two jet system
 - Decay products at the central region

▶ Very important for BSM searches of color singlet particles.

- t-channel production of color-singlet particles via fusion of two vector-bosons
 - No central jet activity
 - Large rapidity gap between two jets
 - Large invariant mass of the two jet system
 - Decay products at the central region

- Very important for BSM searches of color singlet particles.
- Dominant production channel for heavy Higgs at hadron colliders

- t-channel production of color-singlet particles via fusion of two vector-bosons
 - No central jet activity
 - Large rapidity gap between two jets
 - Large invariant mass of the two jet system
 - Decay products at the central region

- ▶ Higher order QCD always below 10% very stable with scale uncertainty
- Very important for BSM searches of color singlet particles.
- Dominant production channel for heavy Higgs at hadron colliders
- ► Central-jet veto: viable to search for lighter Higgs masses

- t-channel production of color-singlet particles via fusion of two vector-bosons
 - No central jet activity
 - Large rapidity gap between two jets
 - Large invariant mass of the two jet system
 - Decay products at the central region

VBF production of $m_h = 125$ **GeV** Higgs

- t-channel production of color-singlet particles via fusion of two vector-bosons
 - No central jet activity
 - Large rapidity gap between two jets
 - Large invariant mass of the two jet system
 - Decay products at the central region

VBF production of $m_h = 125$ **GeV** Higgs

Second highest cross-section after gluon-fusion

- t-channel production of color-singlet particles via fusion of two vector-bosons
 - No central jet activity
 - Large rapidity gap between two jets
 - Large invariant mass of the two jet system
 - Decay products at the central region

VBF production of $m_h = 125$ **GeV** Higgs

- Second highest cross-section after gluon-fusion
- Very clean channel for non-hadronic decay of the Higgs

- t-channel production of color-singlet particles via fusion of two vector-bosons
 - No central jet activity
 - Large rapidity gap between two jets
 - Large invariant mass of the two jet system
 - Decay products at the central region

VBF production of $m_h = 125$ **GeV** Higgs

- ► Second highest cross-section after gluon-fusion
- ▶ Very clean channel for non-hadronic decay of the Higgs
- Most sensitive channel for searching invisible decay of Higgs (Important in many BSM scenario)

- t-channel production of color-singlet particles via fusion of two vector-bosons
 - No central jet activity
 - Large rapidity gap between two jets
 - Large invariant mass of the two jet system
 - Decay products at the central region

Collider bounds on invisible branching ratio of Higgs much higher than in SM!!

- t-channel production of color-singlet particles via fusion of two vector-bosons
 - No central jet activity
 - Large rapidity gap between two jets
 - Large invariant mass of the two jet system
 - Decay products at the central region

Collider bounds on invisible branching ratio of Higgs much higher than in SM!!

New techniques to reduce the upper limit: Deep learning??

▶ Efficiently distinguishes large radius QCD jets from decays of boosted heavy particles $(t, W^{\pm}/Z^{0}/h^{0})$

- ▶ Efficiently distinguishes large radius QCD jets from decays of boosted heavy particles $(t, W^{\pm}/Z^{0}/h^{0})$
- Works with data which have an underlying Euclidean-geometry

- ▶ Efficiently distinguishes large radius QCD jets from decays of boosted heavy particles $(t, W^{\pm}/Z^{0}/h^{0})$
- Works with data which have an underlying Euclidean-geometry
- Jet-substructure variables are mostly functions of the Euclidean <u>distance</u> $\Delta R_{ij} = \sqrt{\Delta \eta_{ij}^2 + \Delta \phi_{ij}^2} \text{ in the } (\eta, \phi) \text{ plane, for instance:}$

$$\mathsf{ECF}(2,\beta) = \sum_{i,j < i \in J} p_T^i p_T^j (\Delta R_{ij})^{\beta}$$

Tower-Image

Salient underlying event structure in Vector-boson fusion (VBF): no color exchanged at LO $\,$

Tower-Image

Salient underlying event structure in Vector-boson fusion(VBF): no color exchanged at LO

Can CNNs leverage information from the full calorimeter tower?

Tower-Image

Salient underlying event structure in Vector-boson fusion(VBF): no color exchanged at LO

Can CNNs leverage information from the full calorimeter tower?

Turns out, we can!

Motivation: Looking at VBF Higgs through a CNN

Invisible Higgs search at LHC

Data-representation: high-level and low-level features

Preprocessing

Network Performance

Result: Bounds on invisible branching ratio of Higgs

Back-up

- ightharpoonup Higgs does not couple to ν in SM, couples to dark-matter in many BSM models
- Most recent ATLAS preliminary result^a puts upper limit on B.R($h \rightarrow \text{inv}$) < 0.13 at 95% confidence level with $\mathcal{L} = 140 \text{ fb}^{-1}$.

^aATLAS-CONF-2020-008

^bPhys. Lett. B 793 (2019) 520 [1809.05937]

- ightharpoonup Higgs does not couple to ν in SM, couples to dark-matter in many BSM models
- Most recent ATLAS preliminary result^a puts upper limit on B.R($h \rightarrow \text{inv}$) < 0.13 at 95% confidence level with $\mathcal{L} = 140 \text{ fb}^{-1}$.
- ▶ Reproduced the shape-analysis of CMS result^b in our setting, for better comparison of increased sensitivity

^aATLAS-CONF-2020-008

^bPhys. Lett. B 793 (2019) 520 [1809.05937]

- ightharpoonup Higgs does not couple to ν in SM, couples to dark-matter in many BSM models
- Most recent ATLAS preliminary result^a puts upper limit on B.R($h \rightarrow \text{inv}$) < 0.13 at 95% confidence level with $\mathcal{L} = 140 \text{ fb}^{-1}$.
- ▶ Reproduced the shape-analysis of CMS result^b in our setting, for better comparison of increased sensitivity
 - ▶ deliberately weaken cuts in $|\Delta \eta_{jj}|$ and m_{jj} ⇒Two signals: S_{EW} (VBF) and S_{QCD} (Gluon-fusion)

^aATLAS-CONF-2020-008

^bPhys. Lett. B 793 (2019) 520 [1809.05937]

- \blacktriangleright Higgs does not couple to ν in SM, couples to dark-matter in many BSM models
- Most recent ATLAS preliminary result^a puts upper limit on B.R($h \rightarrow \text{inv}$) < 0.13 at 95% confidence level with $\mathcal{L} = 140 \text{ fb}^{-1}$.
- Reproduced the shape-analysis of CMS result^b in our setting, for better comparison of increased sensitivity
 - ▶ deliberately weaken cuts in $|\Delta \eta_{jj}|$ and m_{jj} ⇒Two signals: S_{EW} (VBF) and S_{QCD} (Gluon-fusion)
 - We consider the following major backgrounds:
 - $ightharpoonup Z_{QCD}$: $Z(\nu \bar{\nu}) + jets$
 - \blacktriangleright W_{QCD} : $W^{\pm}(I^{\pm}\nu) + jets$
 - ► Z_{EW} : VBF production of $Z(\nu \bar{\nu}) + 2$ *jets*
 - W_{EW} : VBF production of $W^{\pm}(I^{\pm}\nu) + 2$ jets

^aATLAS-CONF-2020-008

^bPhys. Lett. B 793 (2019) 520 [1809.05937]

$$\eta_{j_1} \; \eta_{j_2} < 0 \quad , \quad |\Delta \phi_{jj}| < 1.5 \quad , \quad |\Delta \eta_{jj}| > 1 \quad , \quad m_{jj} > 200 \; {\sf GeV}$$

▶ **VBF Jet tag**: At least two jets with leading(sub-leading) jet $p_T > 80$ (40) GeV with $|\eta| < 4.7$. At least one of the jets to have $|\eta_{j_i}| < 3$.

$$\eta_{j_1} \; \eta_{j_2} < 0 \quad , \quad |\Delta \phi_{jj}| < 1.5 \quad , \quad |\Delta \eta_{jj}| > 1 \quad , \quad \emph{m}_{jj} > 200 \; {\sf GeV}$$

Lepton-veto: No electron(muon) with $p_T > 10$ GeV in the central region, $|\eta| < 2.5(2.4)$.

$$\eta_{j_1} \; \eta_{j_2} < 0 \quad , \quad |\Delta \phi_{jj}| < 1.5 \quad , \quad |\Delta \eta_{jj}| > 1 \quad , \quad \emph{m}_{jj} > 200 \; \text{GeV}$$

- **Lepton-veto:** No electron(muon) with $p_T > 10$ GeV in the central region, $|\eta| < 2.5(2.4)$.
- **Photon-veto:** No photon with $p_T > 15$ GeV in the central region, $|\eta| < 2.5$

$$\eta_{j_1} \; \eta_{j_2} < 0 \quad , \quad |\Delta \phi_{jj}| < 1.5 \quad , \quad |\Delta \eta_{jj}| > 1 \quad , \quad \emph{m}_{jj} > 200 \; \text{GeV}$$

- **Lepton-veto:** No electron(muon) with $p_T > 10$ GeV in the central region, $|\eta| < 2.5(2.4)$.
- **Photon-veto:** No photon with $p_T > 15$ GeV in the central region, $|\eta| < 2.5$
- ▶ au and b-veto: no tau-tagged jets in $|\eta| < 2.3$ with $p_T > 18$ GeV, and no b-tagged jets in $|\eta| < 2.5$ with $p_T > 20$ GeV.

$$\eta_{j_1} \; \eta_{j_2} < 0 \quad , \quad |\Delta \phi_{jj}| < 1.5 \quad , \quad |\Delta \eta_{jj}| > 1 \quad , \quad \emph{m}_{jj} > 200 \; \text{GeV}$$

- **Lepton-veto:** No electron(muon) with $p_T > 10$ GeV in the central region, $|\eta| < 2.5(2.4)$.
- **Photon-veto:** No photon with $p_T > 15$ GeV in the central region, $|\eta| < 2.5$
- ▶ au and b-veto: no tau-tagged jets in $|\eta| < 2.3$ with $p_T > 18$ GeV, and no b-tagged jets in $|\eta| < 2.5$ with $p_T > 20$ GeV.
- ▶ **Missing** E_T (MET): MET > 200 GeV (250 GeV for CMS shape-analysis)

$$\eta_{j_1} \; \eta_{j_2} < 0 \quad , \quad |\Delta \phi_{jj}| < 1.5 \quad , \quad |\Delta \eta_{jj}| > 1 \quad , \quad \textit{m}_{jj} > 200 \; \text{GeV}$$

- **Lepton-veto:** No electron(muon) with $p_T > 10$ GeV in the central region, $|\eta| < 2.5(2.4)$.
- **Photon-veto:** No photon with $p_T > 15$ GeV in the central region, $|\eta| < 2.5$
- ▶ au and b-veto: no tau-tagged jets in $|\eta| < 2.3$ with $p_T > 18$ GeV, and no b-tagged jets in $|\eta| < 2.5$ with $p_T > 20$ GeV.
- ▶ Missing E_T (MET): MET > 200 GeV (250 GeV for CMS shape-analysis)
- ▶ **MET jet alignment**: min($\Delta\phi(\vec{p}_T^{\text{MET}}, \vec{p}_T^j)$) > 0.5 for upto four leading jets with p_T > 30 GeV with $|\eta|$ < 4.7.

Motivation: Looking at VBF Higgs through a CNN

Invisible Higgs search at LHC

Data-representation: high-level and low-level features

Preprocessing

Network Performance

Result: Bounds on invisible branching ratio of Higgs

Back-up

Low-level: Tower-image

Pixel wise calorimeter energy deposits (E_T) converted into pictorial description like 'tower-images' as input to Convolutional Neural Networks

Low-level: Tower-image

▶ Different resolution of calorimeter towers in central and forward regions

Bin-size: High-resolution(HR) 0.08 × 0.08 and a low-resolution(LR): 0.17 × 0.17, $\eta \in (-5, 5)$ and $\phi \in (-\pi, \pi)$

- **Bin-size**: High-resolution(HR) 0.08×0.08 and a low-resolution(LR): 0.17×0.17 , $\eta \in (-5, 5)$ and $\phi \in (-\pi, \pi)$
- ightharpoonup Periodic in ϕ

- **Bin-size**: High-resolution(HR) 0.08×0.08 and a low-resolution(LR): 0.17×0.17 , $\eta \in (-5, 5)$ and $\phi \in (-\pi, \pi)$
- **Padding**: padded at each ϕ -boundary with rows from the opposite boundary.

- **Bin-size**: High-resolution(HR) 0.08×0.08 and a low-resolution(LR): 0.17×0.17 , $\eta \in (-5, 5)$ and $\phi \in (-\pi, \pi)$
- **Padding**: padded at each ϕ -boundary with rows from the opposite boundary.
- ▶ Size LR: 59×45 , and HR: 125×95 .

► **Kinematic**: Information about the event-kinematics from reconstructed objects

$$\mathcal{K} \equiv \left(\; |\Delta \eta_{jj}|, \; |\Delta \phi_{jj}| \;, \; \textit{m}_{jj} \;, \; \textit{MET} \;, \; \phi_{\textit{MET}} \;, \; \Delta \phi_{\textit{MET}}^{j_1} \;, \; \Delta \phi_{\textit{MET}}^{j_2} \;, \; \Delta \phi_{\textit{MET}}^{j_1+j_2} \;\right)$$

Kinematic: Information about the event-kinematics from reconstructed objects

$$\mathcal{K} \equiv (~|\Delta\eta_{jj}|,~|\Delta\phi_{jj}|~,~m_{jj}~,~\textit{MET}~,~\phi_{\textit{MET}}~,~\Delta\phi_{\textit{MET}}^{j_1}~,~\Delta\phi_{\textit{MET}}^{j_2}~,~\Delta\phi_{\textit{MET}}^{j_1+j_2}~)$$

▶ Radiative: Contains information about the QCD radiation pattern.

$$\mathcal{R} \equiv (H_T^{\eta_C} | \eta_C \in \mathcal{E}) \quad , \quad H_T^{\eta_C} = \sum_{\eta < |\eta_C|} E_T \quad .$$

 \mathcal{E} : set of chosen $\eta_{\mathcal{C}}$'s.

Vary η_C uniformly in the interval [1,5] to get 16 $H_T^{\eta_C}$ variables.

Kinematic: Information about the event-kinematics from reconstructed objects

$$\mathcal{K} \equiv (~|\Delta\eta_{jj}|,~|\Delta\phi_{jj}|~,~m_{jj}~,~\textit{MET}~,~\phi_{\textit{MET}}~,~\Delta\phi_{\textit{MET}}^{j_1}~,~\Delta\phi_{\textit{MET}}^{j_2}~,~\Delta\phi_{\textit{MET}}^{j_1+j_2}~)$$

▶ Radiative: Contains information about the QCD radiation pattern.

$$\mathcal{R} \equiv (H_T^{\eta_C} | \eta_C \in \mathcal{E}) \quad , \quad H_T^{\eta_C} = \sum_{\eta < |\eta_C|} E_T \quad .$$

 \mathcal{E} : set of chosen η_C 's. Vary η_C uniformly in the interval [1,5] to get 16 $H_T^{\eta_C}$ variables.

ightharpoonup Combined high-level feature space: ${\cal H}$

Motivation: Looking at VBF Higgs through a CNN

Invisible Higgs search at LHC

Data-representation: high-level and low-level features

Preprocessing

Network Performance

Result: Bounds on invisible branching ratio of Higgs

Back-up

Low-level: Event-preprocessing

- ▶ Rotate along z-axis such that $\phi_0 = 0$. Two instances of $\phi_0 \in \{\phi_{MET}, \phi_{i_1}\}$.
- ightharpoonup Reflect along the xy-plane, such that the leading jet's η is always positive.

Low-level: Event-preprocessing

- ▶ Rotate along z-axis such that $\phi_0 = 0$. Two instances of $\phi_0 \in \{\phi_{MET}, \phi_{i_1}\}$.
- ▶ Reflect along the xy-plane, such that the leading jet's η is always positive.
- ▶ After binning (E_T) and padding in LR and HR : \mathcal{P}_{MET}^{LR} , \mathcal{P}_{MET}^{HR} , \mathcal{P}_{J}^{LR} and \mathcal{P}_{J}^{HR}

Low-level: Event-preprocessing

Averaged Images

Motivation: Looking at VBF Higgs through a CNN

Invisible Higgs search at LHC

Data-representation: high-level and low-level features

Preprocessing

Network Performance

Result: Bounds on invisible branching ratio of Higgs

Back-up

Receiver Operator Characteristics(ROC)

Quantification of classification power: ROC \Rightarrow Area Under Curve(AUC)

Receiver Operator Characteristics(ROC)

Quantification of classification power: ROC \Rightarrow Area Under Curve(AUC)

Low-level: \mathcal{P}_{MET}^{LR} , \mathcal{P}_{MET}^{HR} , \mathcal{P}_{J}^{LR} and $\mathcal{P}_{J}^{HR} \Rightarrow \text{CNNs}$ High-level: $\mathcal{K}(\text{kinematic})$, $\mathcal{R}(\text{QCD-radiative})$ and $\mathcal{H}(\text{combination of the two previous spaces}) \Rightarrow \text{densely connected ANNs}$

Network Performance

▶ Harder to distinguish S_{QCD} from the QCD dominated (\sim 95%) background class (significant S_{QCD} contamination in traditional analysis too)

- ▶ Harder to distinguish S_{QCD} from the QCD dominated (\sim 95%) background class (significant S_{QCD} contamination in traditional analysis too)
- ▶ For the CNN, W_{QCD} dominates over Z_{QCD} in the first bin??

- ▶ Harder to distinguish S_{QCD} from the QCD dominated (\sim 95%) background class (significant S_{QCD} contamination in traditional analysis too)
- ▶ For the CNN, W_{QCD} dominates over Z_{QCD} in the first bin?? ⇒ Presence of calorimeter deposits of lepton in regions $|\eta| > 2.5$ or in the central regions when it is misidentified (including τ^{\pm}).

Motivation: Looking at VBF Higgs through a CNN

Invisible Higgs search at LHC

Data-representation: high-level and low-level features

Preprocessing

Network Performance

Result: Bounds on invisible branching ratio of Higgs

Back-up

Reproduced CMS result at 36 fb⁻¹ (actual : BR < 0.25)

Expected 95% C.L median upper limit on the invisible branching ratio of SM Higgs with one and two sigma sidebands.

	,	,	Expected median upper-limit		
SI.No	Name	Description			
			on B.R($h^0 o {\sf inv}$)		nv)
			$L = 36 \; fb^{-1}$	$L = 140 \; fb^{-1}$	$L=300\ fb^{-1}$
1.	$m_{jj}(MET > 250 \text{ GeV})$	reproduced CMS shape analysis	$0.226^{+0.093}_{-0.063}$	$0.165^{+0.082}_{-0.056}$	$0.130^{+0.089}_{-0.027}$
2.	$ \Delta\eta_{jj} $ (MET $>$ 250 GeV)	$ \Delta\eta_{jj} $ analysis with CMS shape-cuts	$0.200^{+0.080}_{-0.056}$	$0.128^{+0.050}_{-0.036}$	$0.106^{+0.041}_{-0.025}$
3.	$m_{jj}(MET > 200 \text{ GeV})$	m _{jj} shape analysis with weaker cut	$0.191^{+0.075}_{-0.053}$	$0.116^{+0.071}_{-0.036}$	$0.101^{+0.037}_{-0.045}$
4.	$ \Delta\eta_{jj} $ (MET $>$ 200 GeV)	$ \Delta\eta_{jj} $ analysis with weaker cut	$0.162^{+0.065}_{-0.045}$	$0.105^{+0.042}_{-0.029}$	$0.087^{+0.034}_{-0.025}$
5.	\mathcal{P}_J^{LR} -CNN	Low-Resolution, $\phi_0 = \phi_{j_1}$	$0.078^{+0.030}_{-0.022}$	$0.051^{+0.020}_{-0.014}$	$0.045^{+0.017}_{-0.013}$
6.	\mathcal{P}_J^{HR} -CNN	High-Resolution, $\phi_0=\phi_{j_1}$	$0.070^{+0.027}_{-0.020}$	$0.043^{+0.017}_{-0.012}$	$0.035^{+0.013}_{-0.010}$
7.	$\mathcal{P}^{LR}_{ extit{MET}} ext{-}CNN$	Low-Resolution, $\phi_0 = \phi_{MET}$	$0.092^{+0.037}_{-0.025}$	$0.062^{+0.024}_{-0.017}$	$0.053^{+0.023}_{-0.014}$
8.	$\mathcal{P}^{HR}_{ extit{MET}} ext{-}CNN$	High-Resolution, $\phi_0 = \phi_{MET}$	$0.086^{+0.035}_{-0.024}$	$0.058^{+0.023}_{-0.016}$	$0.051^{+0.020}_{-0.014}$
9.	K-ANN	8 kinematic-variables	$0.101^{+0.052}_{-0.022}$	$0.075^{+0.029}_{-0.021}$	$0.063^{+0.027}_{-0.017}$
10.	$\mathcal{R} ext{-ANN}$	16 radiative $H_T^{\eta_C}$ variables	$0.138^{+0.055}_{-0.039}$	$0.094^{+0.036}_{-0.027}$	$0.079^{+0.032}_{-0.022}$
11.	H-ANN	Combination of ${\mathcal K}$ and ${\mathcal R}$ variables	$0.094^{+0.038}_{-0.026}$	$0.065^{+0.026}_{-0.018}$	$0.057^{+0.022}_{-0.015}$

		,	Expected median upper-limit on $B.R(h^0 o inv)$		
SI.No	Name	Description			
			$L=36~{ m fb^{-1}}$	$L = 140 \; fb^{-1}$	$L = 300 \; fb^{-1}$
1.	$m_{jj}(MET > 250 \text{ GeV})$	reproduced CMS shape analysis	$0.226^{+0.093}_{-0.063}$	$0.165^{+0.082}_{-0.056}$	$0.130^{+0.089}_{-0.027}$
2.	$ \Delta \eta_{jj} (MET > 250 \text{ GeV})$	$ \Delta\eta_{jj} $ analysis with CMS shape-cuts	$0.200^{+0.080}_{-0.056}$	$0.128^{+0.050}_{-0.036}$	$0.106^{+0.041}_{-0.025}$
3.	$m_{jj}(MET > 200 \text{ GeV})$	m_{jj} shape analysis with weaker cut	$0.191^{+0.075}_{-0.053}$	$0.116^{+0.071}_{-0.036}$	$0.101^{+0.037}_{-0.045}$
4.	$ \Delta \eta_{jj} (\textit{MET} > 200 \text{ GeV})$	$ \Delta \eta_{jj} $ analysis with weaker cut	$0.162^{+0.065}_{-0.045}$	$0.105^{+0.042}_{-0.029}$	$0.087^{+0.034}_{-0.025}$
5.	\mathcal{P}^{LR}_J -CNN	Low-Resolution, $\phi_0 = \phi_{j_1}$	$0.078^{+0.030}_{-0.022}$	$0.051^{+0.020}_{-0.014}$	$0.045^{+0.017}_{-0.013}$
6.	\mathcal{P}^{HR}_J -CNN	High-Resolution, $\phi_0=\phi_{j_1}$	$0.070^{+0.027}_{-0.020}$	$0.043^{+0.017}_{-0.012}$	$0.035^{+0.013}_{-0.010}$
7.	$\mathcal{P}^{LR}_{ extit{MET}} ext{-}CNN$	Low-Resolution, $\phi_0 = \phi_{MET}$	$0.092^{+0.037}_{-0.025}$	$0.062^{+0.024}_{-0.017}$	$0.053^{+0.023}_{-0.014}$
8.	$\mathcal{P}^{HR}_{ extit{MET}} ext{-}CNN$	High-Resolution, $\phi_0 = \phi_{MET}$	$0.086^{+0.035}_{-0.024}$	$0.058^{+0.023}_{-0.016}$	$0.051^{+0.020}_{-0.014}$
9.	K-ANN	8 kinematic-variables	$0.101^{+0.052}_{-0.022}$	$0.075^{+0.029}_{-0.021}$	$0.063^{+0.027}_{-0.017}$
10.	R-ANN	16 radiative $H_T^{\eta_C}$ variables	$0.138^{+0.055}_{-0.039}$	$0.094^{+0.036}_{-0.027}$	$0.079^{+0.032}_{-0.022}$
11.	H-ANN	Combination of ${\mathcal K}$ and ${\mathcal R}$ variables	$0.094^{+0.038}_{-0.026}$	$0.065^{+0.026}_{-0.018}$	$0.057^{+0.022}_{-0.015}$

► factor of three improvement, utilising the same amount of data.

			Expected median upper-limit on $B.R(h^0 o inv)$		
SI.No	Name	Description			
			$L = 36 \; fb^{-1}$	$L = 140 \; {\rm fb^{-1}}$	$L = 300 \; \mathrm{fb^{-1}}$
1.	$m_{jj}(MET > 250 \text{ GeV})$	reproduced CMS shape analysis	$0.226^{+0.093}_{-0.063}$	$0.165^{+0.082}_{-0.056}$	$0.130^{+0.089}_{-0.027}$
2.	$ \Delta\eta_{jj} (\textit{MET} > 250 \; \text{GeV})$	$ \Delta\eta_{jj} $ analysis with CMS shape-cuts	$0.200^{+0.080}_{-0.056}$	$0.128^{+0.050}_{-0.036}$	$0.106^{+0.041}_{-0.025}$
3.	$m_{jj}(MET > 200 \text{ GeV})$	m _{jj} shape analysis with weaker cut	$0.191^{+0.075}_{-0.053}$	$0.116^{+0.071}_{-0.036}$	$0.101^{+0.037}_{-0.045}$
4.	$ \Delta \eta_{jj} (\textit{MET} > 200 \; \text{GeV})$	$ \Delta\eta_{jj} $ analysis with weaker cut	$0.162^{+0.065}_{-0.045}$	$0.105^{+0.042}_{-0.029}$	0.087 ^{+0.034} _{-0.025}
5.	\mathcal{P}^{LR}_J -CNN	Low-Resolution, $\phi_0 = \phi_{j_1}$	$0.078^{+0.030}_{-0.022}$	$0.051^{+0.020}_{-0.014}$	$0.045^{+0.017}_{-0.013}$
6.	\mathcal{P}_J^{HR} -CNN	High-Resolution, $\phi_0 = \phi_{j_1}$	$0.070^{+0.027}_{-0.020}$	0.043 ^{+0.017} _{-0.012}	$0.035^{+0.013}_{-0.010}$
7.	$\mathcal{P}^{LR}_{ extit{MET}} ext{-}CNN$	Low-Resolution, $\phi_0 = \phi_{MET}$	$0.092^{+0.037}_{-0.025}$	$0.062^{+0.024}_{-0.017}$	$0.053^{+0.023}_{-0.014}$
8.	$\mathcal{P}^{HR}_{ extit{MET}} ext{-}CNN$	High-Resolution, $\phi_0 = \phi_{MET}$	$0.086^{+0.035}_{-0.024}$	$0.058^{+0.023}_{-0.016}$	$0.051^{+0.020}_{-0.014}$
9.	K-ANN	8 kinematic-variables	$0.101^{+0.052}_{-0.022}$	$0.075^{+0.029}_{-0.021}$	0.063^{+0.027}_{-0.017}
10.	R-ANN	16 radiative $H_T^{\eta_C}$ variables	$0.138^{+0.055}_{-0.039}$	$0.094^{+0.036}_{-0.027}$	$0.079^{+0.032}_{-0.022}$
11.	H-ANN	Combination of ${\cal K}$ and ${\cal R}$ variables	$0.094^{+0.038}_{-0.026}$	0.065 +0.026	0.057_0.022

- factor of three improvement, utilising the same amount of data.
- ▶ It can constrain many different BSM models severely.

		<u> </u>			
			Expected median upper-limit on B.R($h^0 ightarrow ext{inv}$)		
SI.No	Name	Description			
			$L = 36 \; fb^{-1}$	$L = 140 \; {\rm fb^{-1}}$	$L = 300 \; \mathrm{fb^{-1}}$
1.	$m_{jj}(MET > 250 \text{ GeV})$	reproduced CMS shape analysis	$0.226^{+0.093}_{-0.063}$	$0.165^{+0.082}_{-0.056}$	$0.130^{+0.089}_{-0.027}$
2.	$ \Delta \eta_{jj} (\textit{MET} > 250 \text{ GeV})$	$ \Delta\eta_{jj} $ analysis with CMS shape-cuts	$0.200^{+0.080}_{-0.056}$	$0.128^{+0.050}_{-0.036}$	$0.106^{+0.041}_{-0.025}$
3.	$m_{jj}(MET > 200 \text{ GeV})$	m _{jj} shape analysis with weaker cut	$0.191^{+0.075}_{-0.053}$	$0.116^{+0.071}_{-0.036}$	$0.101^{+0.037}_{-0.045}$
4.	$ \Delta \eta_{jj} (\textit{MET} > 200 \text{ GeV})$	$ \Delta\eta_{jj} $ analysis with weaker cut	$0.162^{+0.065}_{-0.045}$	$0.105^{+0.042}_{-0.029}$	$0.087^{+0.034}_{-0.025}$
5.	\mathcal{P}^{LR}_J -CNN	Low-Resolution, $\phi_0 = \phi_{j_1}$	$0.078^{+0.030}_{-0.022}$	$0.051^{+0.020}_{-0.014}$	$0.045^{+0.017}_{-0.013}$
6.	\mathcal{P}_J^{HR} -CNN	High-Resolution, $\phi_0=\phi_{j_1}$	$0.070^{+0.027}_{-0.020}$	0.043 ^{+0.017} _{-0.012}	$0.035^{+0.013}_{-0.010}$
7.	$\mathcal{P}^{LR}_{ extit{MET}} ext{-CNN}$	Low-Resolution, $\phi_0 = \phi_{MET}$	$0.092^{+0.037}_{-0.025}$	$0.062^{+0.024}_{-0.017}$	$0.053^{+0.023}_{-0.014}$
8.	$\mathcal{P}^{HR}_{ extit{MET}} ext{-CNN}$	High-Resolution, $\phi_0 = \phi_{MET}$	$0.086^{+0.035}_{-0.024}$	$0.058^{+0.023}_{-0.016}$	$0.051^{+0.020}_{-0.014}$
9.	K-ANN	8 kinematic-variables	$0.101^{+0.052}_{-0.022}$	$0.075^{+0.029}_{-0.021}$	$0.063^{+0.027}_{-0.017}$
10.	R-ANN	16 radiative $H_T^{\eta_C}$ variables	$0.138^{+0.055}_{-0.039}$	0.094+0.036 -0.027	$0.079^{+0.032}_{-0.022}$
11.	H-ANN	Combination of ${\cal K}$ and ${\cal R}$ variables	$0.094^{+0.038}_{-0.026}$	$0.065^{+0.026}_{-0.018}$	0.057_0.022

- factor of three improvement, utilising the same amount of data.
- ▶ It can constrain many different BSM models severely.

	,	,	Expected median upper-limit		
SI.No	Name	Description			
			on B.R($h^0 o {\sf inv}$)		nv)
			$L = 36 \; fb^{-1}$	$L = 140 \; fb^{-1}$	$L=300\ fb^{-1}$
1.	$m_{jj}(MET > 250 \text{ GeV})$	reproduced CMS shape analysis	$0.226^{+0.093}_{-0.063}$	$0.165^{+0.082}_{-0.056}$	$0.130^{+0.089}_{-0.027}$
2.	$ \Delta\eta_{jj} $ (MET $>$ 250 GeV)	$ \Delta\eta_{jj} $ analysis with CMS shape-cuts	$0.200^{+0.080}_{-0.056}$	$0.128^{+0.050}_{-0.036}$	$0.106^{+0.041}_{-0.025}$
3.	$m_{jj}(MET > 200 \text{ GeV})$	m _{jj} shape analysis with weaker cut	$0.191^{+0.075}_{-0.053}$	$0.116^{+0.071}_{-0.036}$	$0.101^{+0.037}_{-0.045}$
4.	$ \Delta\eta_{jj} $ (MET $>$ 200 GeV)	$ \Delta\eta_{jj} $ analysis with weaker cut	$0.162^{+0.065}_{-0.045}$	$0.105^{+0.042}_{-0.029}$	$0.087^{+0.034}_{-0.025}$
5.	\mathcal{P}_J^{LR} -CNN	Low-Resolution, $\phi_0 = \phi_{j_1}$	$0.078^{+0.030}_{-0.022}$	$0.051^{+0.020}_{-0.014}$	$0.045^{+0.017}_{-0.013}$
6.	\mathcal{P}^{HR}_J -CNN	High-Resolution, $\phi_0=\phi_{j_1}$	$0.070^{+0.027}_{-0.020}$	$0.043^{+0.017}_{-0.012}$	$0.035^{+0.013}_{-0.010}$
7.	$\mathcal{P}^{LR}_{ extit{MET}} ext{-}CNN$	Low-Resolution, $\phi_0 = \phi_{MET}$	$0.092^{+0.037}_{-0.025}$	$0.062^{+0.024}_{-0.017}$	$0.053^{+0.023}_{-0.014}$
8.	$\mathcal{P}_{ extit{MET}}^{ extit{HR}} ext{-CNN}$	High-Resolution, $\phi_0 = \phi_{MET}$	$0.086^{+0.035}_{-0.024}$	$0.058^{+0.023}_{-0.016}$	$0.051^{+0.020}_{-0.014}$
9.	K-ANN	8 kinematic-variables	$0.101^{+0.052}_{-0.022}$	$0.075^{+0.029}_{-0.021}$	$0.063^{+0.027}_{-0.017}$
10.	$\mathcal{R} ext{-ANN}$	16 radiative $H_T^{\eta_C}$ variables	$0.138^{+0.055}_{-0.039}$	$0.094^{+0.036}_{-0.027}$	$0.079^{+0.032}_{-0.022}$
11.	H-ANN	Combination of ${\mathcal K}$ and ${\mathcal R}$ variables	$0.094^{+0.038}_{-0.026}$	$0.065^{+0.026}_{-0.018}$	$0.057^{+0.022}_{-0.015}$

ightharpoonup Pileup increases the upper-limit within 1σ errors for \mathcal{P}_{J}^{HR} -CNN.

Conclusion

- Posibility to replace decades old dependence on central-jet veto for the reduction of non-VBF backgrounds, in the meantime gaining significantly in performance.
- Low-level calorimeter image outperforms high-level physics motivated features.
 - ► High-level variables need reconstruction of events.
 - \Rightarrow Feasibility of CNN/ANN triggers for VBF?
- ▶ Minimally affected by pileup even without any mitigation.

Motivation: Looking at VBF Higgs through a CNN

Invisible Higgs search at LHC

Data-representation: high-level and low-level features

Preprocessing

Network Performance

Result: Bounds on invisible branching ratio of Higgs

Back-up

Event simulation details

- Modified version of Higgs Effective Field theory model
 - \Rightarrow Higgs decays at parton level to two scalar dark matter particles for signal
- Finite top-mass: Reweight the Missing $E_T(MET)$ distribution
- After preselection cuts: unweighted for Neural Network training
- ▶ Parton level cross-sections matched upto 4 and 2 jets for Z_{QCD} and W_{QCD}, respectively

Details of data used in analysis

- ▶ Signal and background classes formed by mixing the channels with the expected proportions: $k \times \sigma \times \epsilon_{baseline}$
- **Shape-analysis**(MET > 250 GeV):
 - ► Signal: 39% S_{EW} and the 61% S_{QCD}
 - \blacktriangleright Background: 54.43% Z_{QCD} , 40.92% $W_{QCD},$ 3.05% Z_{EW} and 1.58% W_{EW}
 - Expected number of background events at 36 fb⁻¹ integrated luminosity, scaled for other luminosities.
- ► Neural Network analysis(MET > 200 GeV):
 - ▶ Signal: 44.8% S_{EW} and the 55.2% S_{QCD}
 - ▶ Background: 51.221% Z_{QCD} , 44.896% W_{QCD} , 2.295% Z_{EW} and 1.587% W_{EW}
 - ▶ 100,000 training and 25,000 validation events for each class
 - Models completely agnostic to validation data
 - Further statistical analysis uses validation data scaled by different luminosities.
- Performed shape-analysis for MET > 200 GeV, for a better comparison.

High-level features: Kinematic

MET > 200 GeV

MET > 250 GeV

 $\equiv (\;|\Delta \eta_{ji}|,\;|\Delta \phi_{ji}|\;,\;m_{ji}\;,\;MET\;,\;\phi_{MET}\;,\;\Delta\phi_{MET}^{j_1}\;,\;\Delta\phi_{MET}^{j_2}\;,\;\Delta\phi_{MET}^{j_1+j_2}\;)$

High-level features: QCD-Radiative

Brief detail of networks

- ► After training for 20-1000 epochs, best performing network on the validation data choosen (for each of the 7 networks).
- ► ANN architectures are inspired by the information bottleneck principle, closely related to coarse-graining in RG evolution.

