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Evidence
Cosmological /_—

e.g. Cosmic Microwave Background,
Matter Power spectrum, Galactic rotation curves, Lensing, Milky Way satellites

Direct Detection (DD)

e.g. Fixed target,
Neutrino experiments

Indirect

e.g. Cos
gamma



The DM story

We know there Is N the Universe than visible
baryonic matter.

This invisible matter and does not
carry strong (QCD) or electric (QED) charge.

't may or may not have self-interactions.
't may or may not be a single fundamental particle.

A lot of early DM study was motivated by the “WIMP miracle”

(Right thermal relic density with minimal assumptions: assuming early Universe in equilibrium, solve
Boltzmann equations in expanding Universe, mass and interaction strength should be EVW-scale.)

After ~35 years of experiments, we have strong DD constraints™,

reasonable WIMP region (> 1 GeV) will soon hit irreducible neutrino BG making
it difficult to observe.



The models that we believe are the most likely will inform
our experimental search design.

How do we choose a model?

Great for DD, bad for LHC (large
1. Model agnostic (i.e. using EFT) momentum fransfer)

Good first step, but [ead to generic
signatures that can be from non-DM;
also miss a lof of possibilities

2. Simplest completions of EFTs

3. Based on all possibilites that give the
right DM density Gets complicated very fast.

Design “not-so-simple” simplified models informed by DM density calculations.
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What we know about calculating DM density is changing

1970s

2020s



Translating Early Universe annihilation into LHC prediction

2.9. triplet fermion (Wino)

Early Universe i



Collider “DM” searches sometimes rely on non-DM parts
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Phenomenology of co-annihilation models

Early Universe .



Popular DM models (maybe with co-annihilation)

/’ “t-channel’ SUSY
DD Depends
D Depends
Collider Depends

Usually tn diyet

Are usually visible in DD + Indirect + Collider! Good for a cross check.



Phenomenology of the co-scattering model

SM

(e.g. 1705.08450,1705.09292)

Early Universe .




Phenomenology of a freeze-in (hon-thermal production) model
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(e.g9. 0911.1120,1811.05478)
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Co-scattering and Freeze-in

Co-scattering Freeze-in
DM has feeble couplings
DD
x x with SM
D x x Needs mediator with SM
Mediator likely has very
Collider small decay width and Is

long-lived

Look for long-lived mediators



Moral of the story

Simplified models constructed based on DD are limited

t is best not to pre-dispose yourself to certain mass/coupling regimes,
you may miss the real thing.

New signatures possible with new parameter space. Cast a wide net.

Don't forget the lifetime frontier.

There are some viable models which can ONLY be seen at colliders.



What is a “good” DM model to focus on for colliders?

Has a small number of parameters

Whose LHC signature is not “tangential” (i.e. not Z’ via dijet/dilepton)
obut probes the actual coupling relevant for DM.

Side benefits

Shows the smooth transition from co-scattering to co-annihilation so we can
explore the full mass/coupling parameter space
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Spectrum for Singlet-Triplet model

I

| be = Y + W depends on 6
I

A | P = Yy + 1T fixed by mass splitting
I
1) | W* = £v Soft lepton + MET

| |

>ngle | — ] Soft jets
P = cosB P;+sinB Y, |
Py = =SNG P, + cosB Y, |



Particle lifetime and what it tells you

Three ways to get a long-lived particle:

1. Small couplings
2. Heavy intermediate particle (e.g. most meson decays in SM)

3. Compressed spectrum (e.g. SU(2) Triplet fermion )

Coupling to W e B (small coupling); b = Uy + T+ is highly compressed.

Y. likely to be long-lived.



What would be the possible Direct Detection signals?

30 . . .
B 1.UX excluded

XenonlT prospect
B Allowed

Proportional to 62

100 GeV <m0 <250 GeV Qh? =0.1199 £ 0. 0022

100 005 010 015 020 025 030 035 040
0

Direct detection can only probe upto 6 ~ 0.15 Sharucha of al 4703 00370
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What would be the possible LHC signals?

W* W* + MET
1. (Soft) dijet + MET
" 2. (Soft) dilepton + MET
3. (Soft) lepton + 2 (soft) jets + MET
, 4. Tracks from long-lived -

5. Displaced (soft) jets + MET
6. Displaced (soft) leptons + MET




The singlet-triplet model: limits from prompt LHC searches

40

* pair production
2 CMS-SUS-16-048 |
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As long as (. lifetime is smaller than ~O(1 ns), the scenario is visible in standard searches.
Current limit ~ 220 GeV.



Co-scattering in the singlet-triplet model

124 =
22i
-20%5 . .
g Mass difference expected is about
16 Am ~ 0.1 mc.
" 350 200 250 300 350 400 50 500" Co-anniliniation becomes ineffective
Mo [GeV] at about 8 ~ 105

Bharucha, Brummer, Desal 1804.02357

Point to take away: for current prompt limit of 220 GeV, Am ~ 20 GeV, 6 ~ 10-°
This gives long-lived



Understanding the displaced lepton search

CMS-PAS-EXO-16-022
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Behaviour predicted by DM requirements
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Benchmarks
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Estimating backgrounds

Goal: to estimate background for
p- > 20 GeV from p. > 40 GeV data

We know that exact HF cannot be
estimated by MC to enough accuracy

Model shape of BG using MC

Main source of BG is heavy flavour, 1.e. B-
meson decays

Check that dO and pT are independent
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Estimating backgrounds

1. Model background shape
using a lepton-enriched
pp —bb sample

2. Calculate transfer factors

3. CMS provides 95% UL on
background in the signal regions.

Scale this with the transfer factors.
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Cut-and-count is not good enough!

# (m. |GeV], Am [GeV], e7, [cm]) Ny Nt
HF background <221997 <34688
1 (324, 20, 2) 0.38 0.43
2 (220, 20, 3) 1.18 1.40
3 (220, 20, 0.1) 139 37
4 (220, 20, 1) 174 157
D (220, 20, 10) 32 93
6 (220, 20, 100) 1.35 2.15
7 (220, 40, 1) 1067 980
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Training a neural network
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NN improves sensitivity many fold!

# (m. [GeV], Am [GeV], ¢ [cm]) S St St

SR Il — (220,20,3) 1 (324, 20, 2) 021 | 023 | 0.64
p_(e, u) = 20 GeV — (324,20,2) 2 (220, 20, 3) 057 | 067 | 271
L=140fb" Vs=13 TeV (220,20,0.1) 3 (220, 20, 0.1) 68 19 | 3.06
. (220,20,1) 4 (220,20, 1) 8 72 139
Preliminary — (220,20,10) 5 (220, 20, 10) 15 20 147
— (220,20,100) 6 (220,20, 100) 019 | 070 | 14

— (220,40,1) 7 (220, 40, 1) 449 427 837

HF background 2323 363 14
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Extrapolation of near-future reach
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Performance of the NN
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The displaced lepton search is very general

Heavy Neutral leptons RPV SUSY or minimal freeze-in

(soft) (hard)
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Summary so far...

* T[he singlet-triplet model is an example of a minimal co-annihilation/co-scattering
model

e (o-scattering naturally predicts long-lived particles, which would give a signature
of displaced leptons.

 [he relic density constraint means a small mass gap between the mediator and
DM, therefore implying soft displaced leptons

e [he current displaced lepton search is not sensitive to this model

e \\e propose a search that can probe lifetimes in the range Tmm - 1m using the
displaced lepton signature.



A note about triggers

e | HC generates far too many collisions to store them all. Also, most of them
are “boring”.

o [EXxperiments use “triggers” to select interesting events. The number of events
that can be processed fast enough with collision rate is fixed (in Hz).

e [or “soft” events, there are too many events from SM that would look similar.

e Most searches use something like hard jets / large MET / hard leptons to
select events.

e Possible to have mono jet (ISR) trigger, but this will reduce signal ~ 1/100.

* \We need specialised triggers to look for these objects (work ongoing).



LHC running schedule
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