Recent results on Higgs boson measurements at CMS

Arun Nayak
Institute of Physics
Bhubaneswar

Introduction

Since its discovery in 2012 we have made great journey in characterizing the Higgs boson

- Many of its properties are being probed, especially with the large amount of data collected at 13 TeV during LHC Run-2
- Most precise measurements of its mass, so far:

$$m_H = 125.38 \pm 0.14 \text{ GeV}$$

(Run-1 + 2016 data)

- Couplings are being measured more precisely
- Analyses are carried out for measuring differential cross sections, probe CPviolation, anomalous couplings etc..
- This talk presents results of only a few recent measurements

Overview

- Search for H → μμ decay [CMS-PAS-HIG-19-006]
- Measurement of H \rightarrow $\tau\tau$ cross section and probe of CP violation [CMS-PAS-HIG-19-010, CMS-PAS-HIG-20-006]
- ttH measurements in multilepton final states [CMS-PAS-HIG-19-008]
- Measurements of properties H → γγ decay [CMS-PAS-HIG-19-015]
- Constraints on Anomalous couplings in H → 4ℓ channel [CMS-PAS-HIG-19-009]

$H\rightarrow \mu\mu$

- Golden channel for probing Higgs boson coupling to 2nd generation fermion
- Challenging: Br($H \rightarrow \mu\mu$) $\approx 2.18 \times 10^{-4}$
- Searches performed in four exclusive categories, targeting the production modes: ggH, VBF, VH, ttH
- Events collected using single-muon trigger
- Basic Event Selection: Two well identified and isolated, opposite charged muons with:

$$110 < m_{\mu\mu} < 150 \text{ GeV}$$

ttH, H→μμ

- Smallest production cross section
- Event topology requires to have at least two b jets
- Events categorized based on W decay
 - Leptonic: 1 or 2 additional leptons (W→ℓv)
 - Hadronic: W→ qq', tt is major bkg
- Separate BDT trained for each categories
 - Variables sensitive to tt and $\mu\mu$ kinematics, but uncorrelated with $m_{\mu\mu}$ mass
- Events further splitted based on BDT output (dashed line)
 - Leptonic: 2 categories, Hadronic: 3 categories
- $m_{\mu\mu}$ distributions in each sub-categories for fitted to extract signal

VH, H $\rightarrow \mu\mu$

- Search for additional leptons, other than μμ pair
- Events divided into WH and ZH categories
- BDT discriminator for each categories
 - Variables exploit W/Z topology, in addition to μμ topology
- Further sub-categories based on BDT output distribution

WH: 3 categories

ZH: 2 categories

• $m_{\mu\mu}$ is fitted with Double-Crystal Ball (for signal) and modified Briet-Wigner (for background) to extract signal

VBF H→μμ

- Distinct topology of jets in VBF production process
 - Two jets in the forward direction, with large rapidity gap and large m_{ii}.
- Primary Backgrounds: Z+jets
 - Estimated by extrapolating from m_{µµ} side bands (limited by statistics)
- Deep Neural Network (DNN) for the extraction of signal
 - DNN trained on events in signal region (SR) and side-band (SB)
- Fit to the DNN output score simultaneously in SR and SB to extract signal
 - Inclusion of SB improves background normalization

VBF DNN bin

Data/Bkg.

ggH, H→μμ

- Largest fraction of inclusive events
 - Includes events rejected by all 3 previous categories
 - Dominated by events with 0/1-jets
 - Lowest purity (smallest S/B)
- BDT discriminator to further categorize events based on purity
 - Muon variables in training (decorrelated with $m_{\mu\mu}$)
 - Includes also jet variables, to recover H+X events
- Signal is extracted by fitting $m_{\mu\mu}$ distribution with analytical shapes
 - Signal by Double Crystall-ball function
 - Bkg (dominated by DY) by modified Breit-Wigner etc.., modulated via polynomials

$H\rightarrow \mu\mu$ results

Uncertainty source	$\Delta \mu$	
Total uncertainty	+0.44	-0.42
Statistical uncertainty	+0.41	-0.39
Total systematic uncertainty	+0.17	-0.16
Size of simulated samples	+0.07	-0.06
Total experimental uncertainty	+0.12	-0.10
Total theoretical uncertainty	+0.10	-0.11

Simultaneous fit to all channels

Observed signal strength $\mu = \sigma \times BR / [\sigma \times BR]_{SM}$

$$\mu = 1.19^{+0.41}_{-0.39}(stat)^{+0.17}_{-0.16}(syst)$$

For illustration purposes only, does not represent fit results

$H\rightarrow \mu\mu$ results

Combined with Run-1 measurement (Phys. Lett. B 744 (2015) 184)

The observed excess in data with respect to SM background corresponds to a significance of 3σ

First evidence of $H \rightarrow \mu\mu$ decay at LHC

$H \rightarrow \tau \tau$

- Direct probe of Yukawa coupling to τ leptons
- Advantage:
 - Relatively larger branching fraction
 - Production topologies like VBF, boosted etc.. can be exploited
- Difficulty:

11/09/2020

- \circ Identification of τ lepton decay challenging
- τ decay includes neutrinos => Higgs system cann't be reconstructed fully
- Analysis channels based on τ decay modes: $e\mu$, $e\tau_h$, $\mu\tau_h$, $\tau_h\tau_h$
- Hadronic decay of τ lepton (τ_h) is reconstructed using hadron-plus-strips algorithm → Combines PF charged hadrons and e/γ candidates to reconstruct decay modes
- Multiclass DNN based algorithm (DeepTau) is used to reject fakes from jets, electrons, and muons
 - Significant improvement compared to previous BDT based fake discrimination

 $H\rightarrow \tau\tau$ already discovered using

Run1+2016 data (PLB 779 (2018) 283)

Arun Nayak

Backgrounds

- Largest irreducible background: events with two genuine τ leptons (mostly Z→ττ)
- Estimated using a $\mu \rightarrow \tau$ embedding technique: Replace μ by a τ in Z $\rightarrow \mu\mu$ events.

JHEP 09 (2018)007

Backgrounds with jet $\rightarrow \tau_h$ fakes are estimated from data using a τ_h fake rate method.

$H \rightarrow \tau \tau$ cross section measurements

- Increase data allows precision measurements of Higgs cross sections
- Different production modes can be probed with better precision
- Measurements performed in simplified template cross section (STXS) framework
- Minimizes dependence on theory and allows results to be reinterpreted easily by theory community

13

$H \rightarrow \tau \tau$ cross section measurements

- Events split in 3 categories: 0-jet, boosted, VBF
- Further sub-categories in STXS bins
- 2D discriminants to enhance sensitivity: m_{ττ} vs (m_{ii}, p_T^H, p_T^τ)

$H \rightarrow \tau \tau$ inclusive cross section

CMS-PAS-HIG-19-010

Results obtained using simultaneous binned maximum likelihood fit

All categories are combined and weighted by S/B

$H \rightarrow \tau \tau$ STXS results

CMS-PAS-HIG-19-010

Some STXS bins are merged 2 different schemes

Process-based and topology-based

16

11/09/2020 Arun Nayak Parameter value

H→ττ STXS results

CMS-PAS-HIG-19-010

Some STXS bins are merged 2 different schemes

Process-based and topology-based

17

11/09/2020 Arun Nayak Parameter value

Higgs CP in H → ττ decay

- Higgs CP in HVV couplings have been studied earlier at LHC
- It is less tested in couplings to fermions
- There have been some measurements in Higgs to top couplings (arXiv:2003.10866, arXiv:2004.04545)
- CP measurement in Higgs to tau coupling is complimentary to these results
- The interactions of Higgs boson to τ leptons can be parametrised as:

$$\mathcal{L}_{Y} = -\frac{m_{\tau}H}{v}(\kappa_{\tau}\bar{\tau}\tau + \tilde{\kappa}_{\tau}\bar{\tau}i\gamma_{5}\tau)$$

The CP-mixing angle can be defined by

$$\tan(\phi_{\tau\tau}) = \frac{\tilde{\kappa}_{\tau}}{\kappa_{\tau}}$$

• CP even: $|\phi_{\tau\tau}| = 0^{\circ}$, CP odd: $|\phi_{\tau\tau}| = 90^{\circ}$, CP mix: $0^{\circ} < |\phi_{\tau\tau}| < 90^{\circ}$

Higgs CP observable

Angle between tau decay planes in Higgs rest frame is sensitive to Higgs CP

CP even: $|\phi_{TT}| = 0^{\circ}$, CP odd: $|\phi_{TT}| = 90^{\circ}$, CP mix: $0^{\circ} < |\phi_{TT}| < 90^{\circ}$

Define

$$\phi^* = \arccos(\hat{\lambda}_{\perp}^{*+} \cdot \hat{\lambda}_{\perp}^{*-})$$
 $O^* = \hat{q}^{*-} \cdot (\hat{\lambda}_{\perp}^{*+} \times \hat{\lambda}_{\perp}^{*-})$
Discriminates CP-inv from CP-mix

Discriminates CPodd from CP-even

19

Construct

$$\phi_{\text{CP}} = \begin{cases}
\phi^* & \text{if } O^* \ge 0 \\
360^\circ - \phi^* & \text{if } O^* < 0
\end{cases}$$

Constructing CP observable

- Since Higgs rest frame can not be constructed exactly, an approximation is used
- The observable is constructed in zero-momentum-frame (ZMF) of $\pi^+\pi^-$ system
- For τ_h candidates with intermediate $\rho(a_1)$ mesons, decay plane is constructed from π^{\pm} and π^0 momenta.
- When no $\rho(a_1)$ meson is present, the impact parameter and momenta of ℓ^{\pm}/π^{\pm} are used
- Considering final states in $\mu \tau_h$, $\tau_h \tau_h$: $(\mu, \rho, \pi, a_1^{1pr}, a_1^{3pr}) \times (\mu, \rho, \pi, a_1^{1pr}, a_1^{3pr})$

Most Sensitive: $\mu\rho$, $\pi\rho$, $\rho\rho$

Analysis Strategy

- Multiclass NN (BDT) for $\mu\tau_h$ ($\tau_h\tau_h$) channels, to separate signal from Backgrounds
 - Kinematic variables e.g, p_T, m_{ττ},
 m_{ii}, N_{iet} etc.., are input to MVA
- Three output classes: genuine τ_h bkg, fake τ_h bkg, Higgs

Bin number

- Events falling into the Higgs category are used to extract CP information
- Fit 2D distribution of NN (BDT) score vs φ_{CP} for each channel

CP in H $\rightarrow \tau\tau$: Results

- Simultaneous maximum likelihood fit to extract CP mixing parameter
- Measured value of $\phi_{TT} = 4 \pm 17^{\circ}$ (mostly dominated by statistical uncertainty)
- Pure CP odd exclusion: 3.2σ significance
- Interpretation in κ_{τ} framework, assuming all other couplings as SM.

tH & ttH in multilepton channels

ttH:

- Direct probe of the top-Higgs interaction
 - Allows to measure the strength of Yukawa coupling, CP violation
- Challenging process at LHC:
 - Small production cross section: σ ≈ 0.5 pb
 - Large tt+jets, ttW, ttZ backgrounds
 - Large combinatorics of leptons plus jets from top quark decay

tH & ttH in multilepton channels

tH:

- Even smaller production cross section: $\sigma \approx 74$ fb
- Sensitive to y_t and g_w couplings (interference between diagrams)
- $y_t/g_W = -1$ (ITC) enhances cross section by ≈ 10
- While ttH is not sensitive to ITC
- Multi-lepton final states constitute Higgs decay to W+W-, ZZ, and $\tau^+\tau^-$

Analysis Channels

Search performed in 10 exclusive event categories

- Four leptons (4ℓ)
- Three leptons and zero τ_h (3 ℓ)
- Three leptons and one τ_h (3 ℓ + $1\tau_h$))
- Two same-sign leptons and zero τ_h (2 ℓ ss+0 τ_h)
- Two same-sign leptons and one τ_h (2 ℓ ss + $1\tau_h$)
- Two os leptons and one τ_h (2 ℓ os + $1\tau_h$)
- Two leptons and two τ_h (2 ℓ + 2 τ_h)
- One lepton and two τ_h (1 ℓ + 2 τ_h)
- One lepton and one τ_h (1 ℓ + 1 τ_h)
- Zero lepton and two au_h (0 ℓ + 2 au_h)
 - ℓ = e or μ , charge consistent with final state

- \Box 2lss + $0\tau_h$, 2lss + $1\tau_h$ and 3l + $0\tau_h$ channels enlarged to accept tH events
 - Allowing events with one light (forward) jet and one b tag

Background discrimination

- Major irreducible backgrounds: ttW, ttZ
- tt+jets, DY also irreducible in some channels

MVA discriminators to separate signals from backgrounds

 Kinematic, angular, and object identification variables of jets and leptons are used as input to MVA

$2lss + 0\tau_h$, $2lss + 1\tau_h$ and $3l + 0\tau_h$ channels:

- Multiclass DNN to classify ttH, tH, and backgrounds
- Events categorized based on DNN score and event topology

Other channels:

- No sensitivity to tH process
- BDT used to separate ttH signal from backgrounds
- Event categories based on BDT score

ttH & tH multilepton: Results

CMS-PAS-HIG-19-008

Observed significance for ttH production: 4.7 o

Observed significance for tH production: 1.4 σ

Process	Signal strength
t ī H tH	$0.92^{+0.26}_{-0.23} \ 5.7^{+4.1}_{-4.0}$
t TZ t T W	$\begin{array}{c} 1.03 \pm 0.14 \\ 1.43 \pm 0.21 \end{array}$

ttH & tH multilepton: Results

CMS-PAS-HIG-19-008

Two-dimensional contour of the likelihood function

Interpretation in κ framework (in terms of κ_t and κ_v)

Best fit consistent with the SM expectation

$H \rightarrow \gamma \gamma$ measurements

Recent results on H $\rightarrow \gamma \gamma$ cross section measurements using full Run-2 data

- Individual production mode signal strengths
- Measurements in STXS framework
- More details in CMS-PAS-HIG-19-015

Constraints on anomalous couplings in $H \rightarrow 4\ell$ channel

- CMS studied CP-violation and anomalous couplings of the Higgs boson to vector bosons and fermions, in $H \rightarrow 4l$ channel
- Results are interpreted in the EFT framework (arXiv:1610.07922, arXiv:2002.09888)
- More details in CMS-PAS-HIG-19-009

11/09/2020

Arun Nayak

Summary

- With accumulation of more data we are slowly moving towards precision studies of the Higgs boson
- Discussed a few recent measurements by CMS, with full LHC run-2 data.
 - First evidence of H→μμ decay
 - CP measurements in H $\rightarrow \tau \tau$
 - ttH and tH measurements in multileptons
 - STXS measurements in H $\rightarrow \gamma \gamma$ and anomalous couplings in H $\rightarrow 4\ell$
- Looking forward to more precision measurements in future
 - Hoping for something unexpected...

Thank you for your attention

backup

τ_h identification

- Hadronic τ decay is reconstructed using the so called "hadron-plusstrip" (HPS) algorithm
 - It reconstructs individual decay modes, combining charged hadrons and PF e/γ candidates.
- Fakes arising from jets, electrons, and muons are suppressed using a DNN-based (DeepTau) discriminator

Decay mode	Resonance	\mathcal{B} (%)	
Leptonic decays		35.2	
$ au^- ightarrow \mathrm{e}^- \overline{ u}_\mathrm{e} u_ au$			17.8
$ au^- o \mu^- \overline{ u}_\mu u_ au$			17.4
Hadronic decays		64.8	
$ au^- ightarrow ext{h}^- u_ au$			11.5
$ au^- ightarrow \mathrm{h}^- \pi^0 u_ au$	ho(770)		25.9
$ au^- ightarrow \mathrm{h}^- \pi^0 \pi^0 u_ au$	$a_1(1260)$		9.5
$ au^- ightarrow ext{h}^- ext{h}^+ ext{h}^- u_ au$	$a_1(1260)$		9.8
$ au^- ightarrow ext{h}^- ext{h}^+ ext{h}^- \pi^0 u_ au$			4.8
Other			3.3

CP in H $\rightarrow \tau\tau$: Results

Visual Interpretation:

- Three most sensitive channels are weighted and combined into a single Φ_{CP} distribution
- Each NN/BDT score bin is weighted by A × S/(S+B)

A = the average asymmetry

$$A = \frac{1}{N_{bins}} \sum \frac{|CPeven - CPodd|}{CPeven + CPodd}$$

Data clearly favours the CP-even scenario

CP-odd exclusion at 3.2σ (2.3 σ expected)

STXS bins

tH

$H \rightarrow \gamma \gamma$ measurements

$H \rightarrow \gamma \gamma$ measurements

CMS-PAS-HIG-19-015

production and decay topologies of $H\rightarrow 4l$

Constraints on anomalous couplings in $H\rightarrow 4\ell$ channel

Results in the

EFT framework

 More details in CMS-PAS-HIG-19-009 constraints on the CP-sensitive parameter in the H boson couplings to gluons

Parameter	Observed	Expected
f_{a3}^{ggH}	$-0.53^{+0.51}_{-0.47}$ [-1,1]	0 ± 1 [-1,1]

constraints on the Htt, Hgg, Hff, and HVV coupling parameters in the Higgs basis of the EFT formalism

Channels	Coupling	Observed	Expected	Observed correlation			
ggH	c_{gg} $ ilde{c}_{gg}$	$0.0056^{+0.0025}_{-0.0039} \\ -0.0058^{+0.0037}_{-0.0024}$	$0.0084^{+0.0007}_{-0.0084}\\0.0000^{+0.0085}_{-0.0085}$		1 +0.980	1	
t t H	κ_{t}	$1.06^{+0.14}_{-0.18} \\ 0.00^{+0.76}_{-0.72}$	$1.00^{+0.15}_{-0.23} \\ 0.00^{+0.80}_{-0.80}$		1 0.000	1	
tŧH+ggH	$rac{\kappa_{ m f}}{ ilde{\kappa}_{ m f}}$	$\begin{array}{c} 0.76^{+0.23}_{-0.21} \\ -0.21^{+0.28}_{-0.12} \end{array}$	$1.00^{+0.26}_{-0.39} \\ 0.00 \pm 0.37$		1 +0.745	1	
VBF +VH + H $ ightarrow 4\ell$	$egin{array}{l} \delta c_z \ c_{zz} \ c_{z\square} \ & ilde{c}_{zz} \end{array}$	$\begin{array}{c} -0.25^{+0.27}_{-0.07} \\ 0.03^{+0.10}_{-0.10} \\ -0.03^{+0.04}_{-0.04} \\ -0.11^{+0.30}_{-0.31} \end{array}$	$\begin{array}{c} 0.00^{+0.10}_{-0.28} \\ 0.00^{+0.22}_{-0.16} \\ 0.00^{+0.06}_{-0.09} \\ 0.00^{+0.63}_{-0.63} \end{array}$	$ \begin{array}{r} 1 \\ +0.144 \\ -0.186 \\ +0.077 \end{array} $	$1 \\ -0.847 \\ -0.016$	1 +0.009	1