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FIG. 4. A zoomed-in and re-binned version of Fig. 3 (top),
where the data display an excess over the background model
B0. In the following sections, this excess is interpreted under
solar axion, neutrino magnetic moment, and tritium hypothe-
ses.

exhibit a clear time dependence. More detailed studies
of the temporal distribution of these events are described
in Sec. IVE.

Several instrumental backgrounds and systematic ef-
fects were excluded as possible sources of the excess.
Accidental coincidences (AC), an artificial background
from detector e↵ects, are expected to be spatially uni-
form, but are tightly constrained to have a rate of
< 1 event/(t·y·keV) based on the rates of lone signals
in the detector, i.e., S1s (S2s) that do not have a corre-
sponding S2 (S1) [51]. Surface backgrounds have a strong
spatial dependence [51] and are removed by the fiducial-
ization (1.0 tonne here vs. 1.3 tonnes in [3], correspond-
ing to a radial distance from the TPC surface of & 11 cm)
along with the stricter S2 threshold cut. Both of these
backgrounds also have well-understood signatures in the
(cS1, cS2b) parameter space that are not observed here,
as shown in Fig. 5.

The detection and selection e�ciencies were verified
using 220Rn calibration data. The � decay of 212Pb, a
daughter of 220Rn, was used to calibrate the ER response
of the detector, and thus allows us to validate the e�-
ciency modeling with a high-statistics data set. Similarly
to 214Pb, the model for 212Pb was calculated to account
for atomic screening and exchange e↵ects, as detailed in
Appendix A. A fit to the 220Rn data with this model and
the e�ciency parameter described in Sec. III C is shown
in Fig. 6 for a 1-tonne fiducial volume, where good agree-
ment is observed (p-value = 0.50). Additionally, the S1
and S2 signals of the low-energy events in background
data were found to be consistent with this 220Rn data
set, as shown in Fig. 5. This discounts threshold e↵ects
and other mismodeling (e.g., energy reconstruction) as
possible causes for the excess observed in Fig. 4.

FIG. 5. Distribution of low energy events (black dots) in
the (cS1, cS2b) parameter space, along with the expected
surface (purple) and AC (orange) backgrounds (1� band).
220Rn calibration events are also shown (density map). All the
distributions are within the one-tonne fiducial volume. Gray
lines show isoenergy contours for electronic recoils, where the
excess is between the 1 and 7 keV contours, highlighted in
blue.

FIG. 6. Fit to 220Rn calibration data with a theoretical �-
decay model (see Appendix A) and the e�ciency nuisance
parameter, using the same unbinned profile likelihood frame-
work described in Sec. III C. This fit suggests that the e�-
ciency shown in Fig. 2 describes well the expected spectrum
from 214Pb, the dominant background at low energies.

Uncertainties in the calculated spectra were consid-
ered, particularly for the dominant 214Pb background.
More details can be found in Appendix A, but we briefly
summarize them here. A steep rise in the spectrum at low
energies could potentially be caused by exchange e↵ects;
however this component is accurate to within 1% and
therefore negligible with respect to the observed excess.
The remaining two components, namely the endpoint en-

~ 50 events; 
peak at 2-3 keV

Xenon1T low-energy electron recoil excess

Xenon1T report: 2006.09721



Experimental anomalies come and go. 

What new theoretical or experimental ideas can we learn from them? 



Many roads lead to Rome

- Absorption of relativistic bosons with keV energy, in particular, solar axions; 

- Absorption of non-relativistic bosons with keV mass; 

- Scattering of relativistic particles with keV energy, e.g., solar neutrinos with an 
enhanced magnetic moments;

- Scattering of non-relativistic particles: semi-annihilation, fast initial particles 
such as boosted dark matter, inelastic scattering….

- ……



Many roads lead to Rome

- Absorption of relativistic bosons with keV energy, in particular, solar axions; 

- Absorption of a non-relativistic boson with keV mass; 

- Scattering of relativistic particles with keV energy, e.g., solar neutrinos with an 
enhanced magnetic moments;

- Scattering of non-relativistic particles off electrons: semi-annihilation, fast initial 
particles such as boosted dark matter….

- …… free from look-elsewhere effects 

Question for experimentalists: any other experimental information(e.g., in terms of S1/
S2) to distinguish between relativistic and non-relativistic particles?   



Production of solar axions
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The energy region of interest (ROI) is (1, 210) keV.
The paper is organized as follows. In Sec. II we

present the theoretical background and signal model-
ing of the beyond-the-SM channels considered in this
search. We describe the data analysis in Sec. III, in-
cluding the data selection, background model, and sta-
tistical framework. In Sec. IV, upon observation of a
low-energy excess in the data, we present a hypothesis
of a previously-unconsidered background component, tri-
tium, and then report the results of searches for solar
axions, an anomalous neutrino magnetic moment, and
bosonic dark matter. We end with further discussion
of our findings and a summary of this work in Secs. V
and VI, respectively. The presence of the excess mo-
tivated further scrutiny of the modeling of dominant
backgrounds, the details of which we present in the Ap-
pendix.

II. SIGNAL MODELS

This section describes the physics channels we search
for in this work. In Sec. II A, we motivate the search of
solar axions, presenting their production mechanisms in
the Sun and the detection mechanism in LXe TPCs, and
summarize two benchmark axion models. In Sec. II B, we
introduce the search for an anomalous neutrino magnetic
moment, which would enhance the neutrino-electron elas-
tic scattering cross section at low energies. In Sec. II C,
we discuss the signals induced by bosonic dark matter
including pseudoscalar and vector bosons, examples of
which are axion-like particles and dark photons, respec-
tively. Expected energy spectra of these signals in the
XENON1T detector are summarized at the end of this
section.

For all signal models presented below, the theoret-
ical energy spectra in a LXe TPC were converted to
the space of reconstructed energy by accounting for de-
tector e�ciency and resolution, summarized in Fig. 1.
The e�ciency is shown in Fig. 2 and discussed in
Sec. IIIA. For the energy resolution, the theoretical spec-
tra were smeared using a Gaussian distribution with
energy-dependent width, which was determined using
an empirical fit of mono-energetic peaks as described
in [2, 4]. The energy resolution � is given by

�(E) = a ·
p
E + b · E, (1)

with a = (0.310± 0.004)
p
keV and b = 0.0037 ± 0.0003.

A. Solar Axions

As a solution to the strong CP problem in quan-
tum chromodynamics (QCD), Peccei and Quinn postu-
lated a mechanism that naturally gives rise to a Nambu-
Goldstone boson, the so-called axion [6–8]. In addition
to solving the strong CP problem, QCD axions are also

well-motivated dark matter candidates, with cosmologi-
cal and astrophysical bounds requiring their mass to be
small (typically ⌧ keV) [9–13]. On account of this mass
constraint, dark matter axions produced in the early Uni-
verse cannot be observed in XENON1T. However, so-
lar axions would emerge with—and in turn deposit—
energies in the keV range [14–16], the precise energies
to which XENON1T was designed to be most sensi-
tive. An observation of solar axions would be evidence of
beyond-the-SM physics, but would not by itself be su�-
cient to draw conclusions about axionic dark matter.
We consider three production mechanisms that con-

tribute to the total solar axion flux: (1) Atomic recom-
bination and deexcitation, Bremsstrahlung, and Comp-
ton (ABC) interactions [14, 17], (2) a mono-energetic
14.4 keV M1 nuclear transition of 57Fe [15], and (3)
the Primako↵ conversion of photons to axions in the
Sun [18, 19]. The ABC flux scales with the axion-electron
coupling gae as

�ABC
a / g

2
ae (2)

and was taken from [14]. The 57Fe flux scales with an ef-
fective axion-nucleon coupling g

e↵
an = �1.19g0an + g

3
an and

is given by [20, 21]

�
57Fe
a =

✓
ka

k�

◆3

⇥ 4.56⇥ 1023(ge↵an )
2 cm�2s�1

, (3)

where g0/3an are the isoscalar/isovector coupling constants
and ka and k� are the momenta of the produced axion
and photon, respectively. The Primako↵ flux scales with
the axion-photon coupling ga� and is given by [22]

d�Prim
a

dEa
=

✓
ga�

GeV�1

◆2 ✓
Ea

keV

◆2.481

e
�Ea/(1.205 keV)

⇥ 6⇥ 1030 cm�2s�1keV�1
,

(4)

where Ea is the energy of the axion. All three flux com-
ponents could be detected in XENON1T via the axioelec-
tric e↵ect – the axion analog to the photoelectric e↵ect –
which has a cross section that scales with axion-electron
coupling gae and is given by [20, 23–25]

�ae = �pe
g
2
ae

�

3E2
a

16⇡↵m2
e

✓
1� �

2/3

3

◆
, (5)

where �pe is the photoelectric cross section, � and Ea

are the velocity and energy of the axion, respectively, ↵
is the fine structure constant, and me is the mass of the
electron. Combining the production and detection mech-
anisms, we are able to constrain the values of |gae| (ABC),��gaege↵an

�� (57Fe), and |gaega�| (Primako↵)1. We consider

1 We drop the absolute value notation for the remainder of this
paper.

- Atomic recombination and deexcitation, Bremsstrahlung, Compton scattering (ABC);

- Nuclear transition of Fe 

- Primakoff conversion of photons  

�Fe
a / g2an
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Key feature: axion energy set by the core temperature of the Sun, ~ 
KeV. Thus no look-elsewhere effects. 



14

FIG. 8. Constraints on the axion-electron gae, axion-photon
ga�, and e↵ective axion-nucleon ge↵an couplings from a search
for solar axions. The shaded blue regions show the two-
dimensional projections of the three-dimensional confidence
surface (90% C.L.) of this work, and hold for ma < 100 eV/c2.
See text for more details on the three individual projections.
All three plots include constraints (90% C.L.) from other
axion searches, with arrows denoting allowed regions, and
the predicted values from the benchmark QCD axion mod-
els DFSZ and KSVZ.

very close to the limit reported by Borexino [39], which
is currently the most stringent direct detection constraint
on the neutrino magnetic moment. Similar to the solar
axion analysis, if we infer the excess as a neutrino mag-
netic moment signal, our result is in strong tension with
indirect constraints from analyses of white dwarfs [111]
and globular clusters [41].
As in Sec. IVB, we report on the additional statistical

test where an unconstrained tritium component was in-
cluded in both null and alternative hypotheses. In this
test the significance of the neutrino magnetic moment
signal is reduced to 0.9�.
This is the most sensitive search to date for an en-

hanced neutrino magnetic moment with a dark matter
detector, and suggests that this beyond-the-SM signal
be included in the physics reach of other dark matter
experiments.

FIG. 9. Constraints (90% C.L.) on the neutrino magnetic mo-
ment from this work compared to experiments Borexino [39]
and Gemma [112], along with astrophysical limits from the
cooling of globular clusters [41] and white dwarfs [111]. Ar-
rows denote allowed regions. The upper boundary of the in-
terval from this work is about the same as that from Borexino
and Gemma. If we interpret the low-energy excess as a neu-
trino magnetic moment signal, its 90% confidence interval is
in strong tension with the astrophysical constraints.

D. Bosonic Dark Matter Results

For bosonic dark matter, we iterate over (fixed) masses
between 1 and 210 keV/c2 to search for peak-like ex-
cesses. The trial factors to convert between local and
global significance were extracted using toy Monte Carlo
methods. While the excess does lead to looser constraints
than expected at low energies, we find no global signifi-
cance over 3� for this search under the background model
B0. We thus set an upper limit on the couplings gae and
 as a function of particle mass.
These upper limits (90% C.L.) are shown in Fig. 10,

along with the sensitivity band in green (1�) and yel-

Detection of solar axions
Axio-electric effect: �ae / g2ae
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Solar axion explanation is ruled 
out stellar cooling bounds  
(one could build exotic models to get 
around the bounds: axion couplings 
are modified in stars…). 

Given the stellar bound, the 
predicted number of events will be 
smaller by a factor of 104. 

Similar story for solar dark photons.

A useful benchmark: given the stellar 
bounds, solar axion flux on earth is at most 

� ⇠ 1010 cm�2s�1
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Other origins of relativistic bosons?

Decouple the production of bosons from the absorption process in direct detection. 

In particular, production of relativistic bosons may dominantly come from a source 
different from the Sun and does not depend on their couplings to the SM.  

Axions or dark photons from DM decays or annihilations.  

Could they compete with the solar flux? 



Other origins of relativistic bosons?

Decouple the production of bosons from the absorption process in direct detection. 

In particular, production of relativistic bosons may dominantly come from a source 
different from the Sun and does not depend on their couplings to the SM.  

Axions or dark photons from DM decays or annihilations.  

Could they compete with the solar flux?  

Yes, it is possible. Useful and simple model-independent upper bounds on the galactic 
flux of relativistic bosons (independent of Xenon1T excess). 



Dark matter decays2.1 DM Decays

First we consider the scenario of the DM particle � with mass m�, decaying to relativistic particles,

 , with a lifetime ⌧�. The flux at Earth is then given by

d�d

dE
=

✓
dN 

dE

◆

0

f�

4⇡⌧�m�

Z
⇢DM(s)dsd⌦, (1)

where
⇣
dN 
dE

⌘

0
is the energy spectrum of the produced  ; f� is the fraction of dark matter being �

and s is the heliocentric distance. Note that the integral above is the usual J-factor for DM decays,

Jdec =
R
⇢DM(s)dsd⌦, widely used in indirect detection. Note that in our case we integrate over the

entire sky, while in indirect detection the signal usually comes from a specific region of interest, often

only a part of the sky. It turns out that the dominant contribution to the J-factor is from the Milky

Way (MW) halo, which is about 1023 GeV cm�2. More details of calculations on the J-factor can be

found in Appendix A.

The lifetime of the decaying DM has to be at least longer than the age of the Universe, ⌧� . 4⇥ 1017

s. With this simplest model-independent requirement, the maximal flux on Earth of the relativistic

particles from DM decays is

�d ⇡ 1010 cm�2s�1
f�

✓
4 keV

m�

◆✓
4 ⇥ 1017 s

⌧�

◆Z ✓
dN 

dE

◆

0

dE

�
. (2)

For simple two-body decays with both daughter particles being  ,
R ⇣

dN 
dE

⌘

0
dE = 2. More generally,

this integral yields an O(1) number. If DM decays to standard model particles, the constraints on its

lifetime usually are significantly stronger. Depending on the final states, the DM lifetime may need to

be much longer than the age of the Universe. There are also strong constraints on DM decaying to

only relativistic particles from the CMB and large scale structure observations, independent of the final

states [14–19]. One could also consider a more complicated scenario where each DM particle decays into

a non-relativistic daughter and a relativistic one. The minimum DM lifetime in such a scenario still

turns out to be slightly longer than the age of the Universe [20]. Note that in Eq. (2), we include the

parametric dependence of the flux on the decaying dark matter fraction. Given the constraint derived

from Planck data in ref. [19], f�/⌧� < 2 ⇥ 10�19 s, the maximum flux is about 109 cm�2s�1, suppressed

by one order of magnitude compared to the benchmark value in Eq. (2). Thus, as we will show, our

conservative upper bound on  flux from DM decays already provides an useful insight into whether

we could have a galactic flux of relativistic particles with keV energies comparable to the flux of solar

axions.

2.2 DM Annihilations

Let us now consider the scenario where a fraction f� of DM can annihilate into relativistic  parti-

cles. This includes two possible cases: DM directly annihilates into various particles including  , or it

annihilates into some intermediate states, which subsequently decay to  . The goal here is similar to

the study in the previous section. We want to derive some upper bounds on the total flux of  on Earth

from DM annihilations, assuming very general requirements for DM.

We assume that the abundance f�⌦dm has already been set at a redshift z0 via an unspecified

mechanism about which we remain agnostic (e.g. freeze-out, freeze-in, or moduli decays). For redshifts

below z0 then, the average number density of �, n�, is given by:

n�(z) =
f�⌦dm⇢crit

m�
(1 + z)3 ⇡ 1 cm�3

⇥ f�(1 + z)3
✓

keV

m�

◆
, z < z0 , (3)
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Dark matter ɸ decays to relativistic bosons

energy spectrum, e.g. 
if DM decays to only 
two identical bosons 
in the final state, this 
is 2 𝛿(E-mɸ/2)

fraction of decaying DM

lifetime decay J-factor: dominated by 
the Milky Way Halo



Dark matter decays

2.1 DM Decays

First we consider the scenario of the DM particle � with mass m�, decaying to relativistic particles,

 , with a lifetime ⌧�. The flux at Earth is then given by

d�d

dE
=

✓
dN 

dE

◆

0

f�

4⇡⌧�m�

Z
⇢DM(s)dsd⌦, (1)

where
⇣
dN 
dE

⌘

0
is the energy spectrum of the produced  ; f� is the fraction of dark matter being �

and s is the heliocentric distance. Note that the integral above is the usual J-factor for DM decays,

Jdec =
R
⇢DM(s)dsd⌦, widely used in indirect detection. Note that in our case we integrate over the

entire sky, while in indirect detection the signal usually comes from a specific region of interest, often

only a part of the sky. It turns out that the dominant contribution to the J-factor is from the Milky

Way (MW) halo, which is about 1023 GeV cm�2. More details of calculations on the J-factor can be

found in Appendix A.

The lifetime of the decaying DM has to be at least longer than the age of the Universe, ⌧� . 4⇥ 1017

s. With this simplest model-independent requirement, the maximal flux on Earth of the relativistic

particles from DM decays is

�d ⇡ 1010 cm�2s�1
f�

✓
4 keV

m�

◆✓
4 ⇥ 1017 s

⌧�

◆Z ✓
dN 

dE

◆

0

dE

�
. (2)

For simple two-body decays with both daughter particles being  ,
R ⇣

dN 
dE

⌘

0
dE = 2. More generally,

this integral yields an O(1) number. If DM decays to standard model particles, the constraints on its

lifetime usually are significantly stronger. Depending on the final states, the DM lifetime may need to

be much longer than the age of the Universe. There are also strong constraints on DM decaying to

only relativistic particles from the CMB and large scale structure observations, independent of the final

states [14–19]. One could also consider a more complicated scenario where each DM particle decays into

a non-relativistic daughter and a relativistic one. The minimum DM lifetime in such a scenario still

turns out to be slightly longer than the age of the Universe [20]. Note that in Eq. (2), we include the

parametric dependence of the flux on the decaying dark matter fraction. Given the constraint derived

from Planck data in ref. [19], f�/⌧� < 2 ⇥ 10�19 s, the maximum flux is about 109 cm�2s�1, suppressed

by one order of magnitude compared to the benchmark value in Eq. (2). Thus, as we will show, our

conservative upper bound on  flux from DM decays already provides an useful insight into whether

we could have a galactic flux of relativistic particles with keV energies comparable to the flux of solar

axions.

2.2 DM Annihilations

Let us now consider the scenario where a fraction f� of DM can annihilate into relativistic  parti-

cles. This includes two possible cases: DM directly annihilates into various particles including  , or it

annihilates into some intermediate states, which subsequently decay to  . The goal here is similar to

the study in the previous section. We want to derive some upper bounds on the total flux of  on Earth

from DM annihilations, assuming very general requirements for DM.

We assume that the abundance f�⌦dm has already been set at a redshift z0 via an unspecified

mechanism about which we remain agnostic (e.g. freeze-out, freeze-in, or moduli decays). For redshifts

below z0 then, the average number density of �, n�, is given by:

n�(z) =
f�⌦dm⇢crit

m�
(1 + z)3 ⇡ 1 cm�3

⇥ f�(1 + z)3
✓

keV

m�

◆
, z < z0 , (3)

3

age of the Universe

Stronger semi-model independent bound from CMB, assuming DM decays only to 
relativistic particles,                                   (Poulin et. al 2016)

One order of magnitude below the upper bound of solar axion flux.  
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For simple two-body decays with both daughter particles being  ,
R ⇣

dN 
dE

⌘

0
dE = 2. More generally,

this integral yields an O(1) number. If DM decays to standard model particles, the constraints on its

lifetime usually are significantly stronger. Depending on the final states, the DM lifetime may need to

be much longer than the age of the Universe. There are also strong constraints on DM decaying to

only relativistic particles from the CMB and large scale structure observations, independent of the final

states [14–19]. One could also consider a more complicated scenario where each DM particle decays into

a non-relativistic daughter and a relativistic one. The minimum DM lifetime in such a scenario still

turns out to be slightly longer than the age of the Universe [20]. Note that in Eq. (2), we include the

parametric dependence of the flux on the decaying dark matter fraction. Given the constraint derived

from Planck data in ref. [19], f�/⌧� < 2 ⇥ 10�19 s, the maximum flux is about 109 cm�2s�1, suppressed

by one order of magnitude compared to the benchmark value in Eq. (2). Thus, as we will show, our

conservative upper bound on  flux from DM decays already provides an useful insight into whether

we could have a galactic flux of relativistic particles with keV energies comparable to the flux of solar

axions.

2.2 DM Annihilations

Let us now consider the scenario where a fraction f� of DM can annihilate into relativistic  parti-

cles. This includes two possible cases: DM directly annihilates into various particles including  , or it

annihilates into some intermediate states, which subsequently decay to  . The goal here is similar to

the study in the previous section. We want to derive some upper bounds on the total flux of  on Earth

from DM annihilations, assuming very general requirements for DM.

We assume that the abundance f�⌦dm has already been set at a redshift z0 via an unspecified

mechanism about which we remain agnostic (e.g. freeze-out, freeze-in, or moduli decays). For redshifts

below z0 then, the average number density of �, n�, is given by:

n�(z) =
f�⌦dm⇢crit

m�
(1 + z)3 ⇡ 1 cm�3

⇥ f�(1 + z)3
✓

keV

m�

◆
, z < z0 , (3)

3

�d . 109 cm�2s�1
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Dark matter annihilations
Agnostic of the DM production mechanism (freeze-out, freeze-in, moduli decays …). 
Apply even when dark sector is completely secluded from the SM except through the 
weakly-coupled boson portal.   

Assumptions: 

1. DM relic abundance set (at redshift z0) before matter-radiation equality;

2. <σv> velocity independent. 

where ⇢crit ⇡ 10�5
h
2 GeV·cm�3 is the critical density of the Universe. We take ⌦dm = 0.25 and h = 0.73

as fiducial values for the cosmological parameters. We pick the benchmark scale of m� to be keV,

motivated by the XENON1T excess.

Quite generically, the energy density in � particles arises from a thermal bath (either the SM or a

more exotic one, via either freeze-out or freeze-in). In order for this energy density to not be vanishingly

small, the energy density of the bath itself must be non-negligible. Since after matter-radiation equality

the energy density in all radiation, including this thermal bath, quickly dilutes, we are forced to have

the � relic abundance set before this happens. Thus, we arrive to the condition that

z0 ⇠
> zeq , (4)

where zeq ⇡ 3000 is the redshift of matter-radiation equality. Note that this is a very conservative

condition. Cosmological data such as measurements of the acoustic peaks of the cosmic microwave

background or of matter structure demand that the DM be very cold. For generic models this means

that the redshift z0 at which the DM abundance is fixed has to be much larger than zeq, before the smallest

modes observed enter the horizon. However, we will restrict ourselves to the condition in Eq. (4).

A fixed abundance for � implies an unchanging comoving number density. This results in the following

consistency condition on the annihilation rate:

�ann(z0) = n�(z0)h�vi
⇠
< H(z0) , (5)

which guarantees the annihilations have stopped occurring. Taking the Hubble expansion rate as H(z) =

H0

p
⌦(z) = 2 ⇥ 10�18 s�1

p
⌦(z), we arrive at

h�vi
⇠
< 2 ⇥ 10�18 cm3

s

p
⌦(z0)

(1 + z0)3
f
�1
�

✓
m�

keV

◆

⇡ 10�18 cm3

s

1

(1 + z0)3/2
f
�1
�

✓
m�

keV

◆

⇠
< 7 ⇥ 10�24 cm3

s
f
�1
�

✓
m�

keV

◆
, (6)

where in the second line, we approximate ⌦(z0) ⇡ ⌦(z = 0)(1+z0)3 in the matter-domination epoch, and

for the last inequality we use Eq. (4). We also want to emphasize that this is not a condition requiring �

to have a thermal relic abundance, but the annihilation of � to become negligible after zeq, so that both

the density background and perturbation evolutions are una↵ected by DM annihilations into radiation

(even when the radiation is not SM particles). Similar to the decay case, if DM annihilates into SM

particles, there are usually much stronger constraints. Yet the bound could apply to cases in which a

dark sector is completely secluded from the SM except for a portal through  , which is feebly coupled

to the SM (e.g. axion).4

3We are aware of the H0 “crisis” in cosmology, so we split the di↵erence.
4For example, consider a dark sector containing �, a complex scalar DM candidate; �1, �̃1 and �2, �̃2, two vector-like

pairs of fermions and a, an axion-like particle. We assume that all the particles are decoupled from the SM except for

coupling to a, which couples to the SM electrons. The hidden sector particles are charged under a discrete Z3 symmetry

with the charge assignments as � : +1, �1 : +1, �̃1 : �1, �2 : +1, �̃2 : �1, a : 0. The Lagrangian (other than the kinetic

terms) that respects the symmetry is

m
2
��

†
�+m1�1�̃1 +m2�2�̃2 + y1��1�1 + y2��2�2 +

@
µ
a

fa
�
†
1�̄µ�2 +

@
µ
a

fa
�̃
†
1�̄µ�̃2 + c.c. (7)

�1, �̃1 are degenerate in mass with mass m1 and so are �2, �̃2 with a common mass m2. To have � stable, we need to have

the following mass inequality m2 < m1 < m� < 2m2. Then we have ��
†
! �1�

†
1,�1 ! a+ �2 that leads to production of

a’s.

4



where ⇢crit ⇡ 10�5
h
2 GeV·cm�3 is the critical density of the Universe. We take ⌦dm = 0.25 and h = 0.73

as fiducial values for the cosmological parameters. We pick the benchmark scale of m� to be keV,

motivated by the XENON1T excess.

Quite generically, the energy density in � particles arises from a thermal bath (either the SM or a

more exotic one, via either freeze-out or freeze-in). In order for this energy density to not be vanishingly

small, the energy density of the bath itself must be non-negligible. Since after matter-radiation equality

the energy density in all radiation, including this thermal bath, quickly dilutes, we are forced to have

the � relic abundance set before this happens. Thus, we arrive to the condition that

z0 ⇠
> zeq , (4)

where zeq ⇡ 3000 is the redshift of matter-radiation equality. Note that this is a very conservative

condition. Cosmological data such as measurements of the acoustic peaks of the cosmic microwave

background or of matter structure demand that the DM be very cold. For generic models this means

that the redshift z0 at which the DM abundance is fixed has to be much larger than zeq, before the smallest

modes observed enter the horizon. However, we will restrict ourselves to the condition in Eq. (4).

A fixed abundance for � implies an unchanging comoving number density. This results in the following

consistency condition on the annihilation rate:

�ann(z0) = n�(z0)h�vi
⇠
< H(z0) , (5)

which guarantees the annihilations have stopped occurring. Taking the Hubble expansion rate as H(z) =

H0

p
⌦(z) = 2 ⇥ 10�18 s�1

p
⌦(z), we arrive at

h�vi
⇠
< 2 ⇥ 10�18 cm3

s

p
⌦(z0)

(1 + z0)3
f
�1
�

✓
m�

keV

◆

⇡ 10�18 cm3

s

1

(1 + z0)3/2
f
�1
�

✓
m�

keV

◆

⇠
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s
f
�1
�

✓
m�

keV

◆
, (6)

where in the second line, we approximate ⌦(z0) ⇡ ⌦(z = 0)(1+z0)3 in the matter-domination epoch, and

for the last inequality we use Eq. (4). We also want to emphasize that this is not a condition requiring �

to have a thermal relic abundance, but the annihilation of � to become negligible after zeq, so that both

the density background and perturbation evolutions are una↵ected by DM annihilations into radiation

(even when the radiation is not SM particles). Similar to the decay case, if DM annihilates into SM

particles, there are usually much stronger constraints. Yet the bound could apply to cases in which a

dark sector is completely secluded from the SM except for a portal through  , which is feebly coupled

to the SM (e.g. axion).4

3We are aware of the H0 “crisis” in cosmology, so we split the di↵erence.
4For example, consider a dark sector containing �, a complex scalar DM candidate; �1, �̃1 and �2, �̃2, two vector-like

pairs of fermions and a, an axion-like particle. We assume that all the particles are decoupled from the SM except for

coupling to a, which couples to the SM electrons. The hidden sector particles are charged under a discrete Z3 symmetry

with the charge assignments as � : +1, �1 : +1, �̃1 : �1, �2 : +1, �̃2 : �1, a : 0. The Lagrangian (other than the kinetic

terms) that respects the symmetry is

m
2
��

†
�+m1�1�̃1 +m2�2�̃2 + y1��1�1 + y2��2�2 +

@
µ
a

fa
�
†
1�̄µ�2 +

@
µ
a

fa
�̃
†
1�̄µ�̃2 + c.c. (7)

�1, �̃1 are degenerate in mass with mass m1 and so are �2, �̃2 with a common mass m2. To have � stable, we need to have

the following mass inequality m2 < m1 < m� < 2m2. Then we have ��
†
! �1�

†
1,�1 ! a+ �2 that leads to production of

a’s.

4

) h�vi . 7⇥ 10�24 cm
3

s
f�1
�

⇣ m�

keV

⌘
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where ⇢crit ⇡ 10�5
h
2 GeV·cm�3 is the critical density of the Universe. We take ⌦dm = 0.25 and h = 0.73

as fiducial values for the cosmological parameters. We pick the benchmark scale of m� to be keV,

motivated by the XENON1T excess.

Quite generically, the energy density in � particles arises from a thermal bath (either the SM or a

more exotic one, via either freeze-out or freeze-in). In order for this energy density to not be vanishingly

small, the energy density of the bath itself must be non-negligible. Since after matter-radiation equality

the energy density in all radiation, including this thermal bath, quickly dilutes, we are forced to have

the � relic abundance set before this happens. Thus, we arrive to the condition that

z0 ⇠
> zeq , (4)

where zeq ⇡ 3000 is the redshift of matter-radiation equality. Note that this is a very conservative

condition. Cosmological data such as measurements of the acoustic peaks of the cosmic microwave

background or of matter structure demand that the DM be very cold. For generic models this means

that the redshift z0 at which the DM abundance is fixed has to be much larger than zeq, before the smallest

modes observed enter the horizon. However, we will restrict ourselves to the condition in Eq. (4).

A fixed abundance for � implies an unchanging comoving number density. This results in the following

consistency condition on the annihilation rate:

�ann(z0) = n�(z0)h�vi
⇠
< H(z0) , (5)

which guarantees the annihilations have stopped occurring. Taking the Hubble expansion rate as H(z) =

H0

p
⌦(z) = 2 ⇥ 10�18 s�1

p
⌦(z), we arrive at

h�vi
⇠
< 2 ⇥ 10�18 cm3

s

p
⌦(z0)

(1 + z0)3
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✓
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◆
, (6)

where in the second line, we approximate ⌦(z0) ⇡ ⌦(z = 0)(1+z0)3 in the matter-domination epoch, and

for the last inequality we use Eq. (4). We also want to emphasize that this is not a condition requiring �

to have a thermal relic abundance, but the annihilation of � to become negligible after zeq, so that both

the density background and perturbation evolutions are una↵ected by DM annihilations into radiation

(even when the radiation is not SM particles). Similar to the decay case, if DM annihilates into SM

particles, there are usually much stronger constraints. Yet the bound could apply to cases in which a

dark sector is completely secluded from the SM except for a portal through  , which is feebly coupled

to the SM (e.g. axion).4

3We are aware of the H0 “crisis” in cosmology, so we split the di↵erence.
4For example, consider a dark sector containing �, a complex scalar DM candidate; �1, �̃1 and �2, �̃2, two vector-like

pairs of fermions and a, an axion-like particle. We assume that all the particles are decoupled from the SM except for

coupling to a, which couples to the SM electrons. The hidden sector particles are charged under a discrete Z3 symmetry

with the charge assignments as � : +1, �1 : +1, �̃1 : �1, �2 : +1, �̃2 : �1, a : 0. The Lagrangian (other than the kinetic

terms) that respects the symmetry is

m
2
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†
�+m1�1�̃1 +m2�2�̃2 + y1��1�1 + y2��2�2 +

@
µ
a

fa
�
†
1�̄µ�2 +

@
µ
a

fa
�̃
†
1�̄µ�̃2 + c.c. (7)

�1, �̃1 are degenerate in mass with mass m1 and so are �2, �̃2 with a common mass m2. To have � stable, we need to have

the following mass inequality m2 < m1 < m� < 2m2. Then we have ��
†
! �1�

†
1,�1 ! a+ �2 that leads to production of

a’s.

4
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s
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�

⇣ m�
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⌘
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weaker bound compared to thermal freeze out benchmark  3⇥ 10�26 cm3/s
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where ⇢crit ⇡ 10�5
h
2 GeV·cm�3 is the critical density of the Universe. We take ⌦dm = 0.25 and h = 0.73

as fiducial values for the cosmological parameters. We pick the benchmark scale of m� to be keV,

motivated by the XENON1T excess.

Quite generically, the energy density in � particles arises from a thermal bath (either the SM or a

more exotic one, via either freeze-out or freeze-in). In order for this energy density to not be vanishingly

small, the energy density of the bath itself must be non-negligible. Since after matter-radiation equality

the energy density in all radiation, including this thermal bath, quickly dilutes, we are forced to have

the � relic abundance set before this happens. Thus, we arrive to the condition that

z0 ⇠
> zeq , (4)

where zeq ⇡ 3000 is the redshift of matter-radiation equality. Note that this is a very conservative

condition. Cosmological data such as measurements of the acoustic peaks of the cosmic microwave

background or of matter structure demand that the DM be very cold. For generic models this means

that the redshift z0 at which the DM abundance is fixed has to be much larger than zeq, before the smallest

modes observed enter the horizon. However, we will restrict ourselves to the condition in Eq. (4).

A fixed abundance for � implies an unchanging comoving number density. This results in the following

consistency condition on the annihilation rate:

�ann(z0) = n�(z0)h�vi
⇠
< H(z0) , (5)

which guarantees the annihilations have stopped occurring. Taking the Hubble expansion rate as H(z) =

H0

p
⌦(z) = 2 ⇥ 10�18 s�1

p
⌦(z), we arrive at
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where in the second line, we approximate ⌦(z0) ⇡ ⌦(z = 0)(1+z0)3 in the matter-domination epoch, and

for the last inequality we use Eq. (4). We also want to emphasize that this is not a condition requiring �

to have a thermal relic abundance, but the annihilation of � to become negligible after zeq, so that both

the density background and perturbation evolutions are una↵ected by DM annihilations into radiation

(even when the radiation is not SM particles). Similar to the decay case, if DM annihilates into SM

particles, there are usually much stronger constraints. Yet the bound could apply to cases in which a

dark sector is completely secluded from the SM except for a portal through  , which is feebly coupled

to the SM (e.g. axion).4

3We are aware of the H0 “crisis” in cosmology, so we split the di↵erence.
4For example, consider a dark sector containing �, a complex scalar DM candidate; �1, �̃1 and �2, �̃2, two vector-like

pairs of fermions and a, an axion-like particle. We assume that all the particles are decoupled from the SM except for

coupling to a, which couples to the SM electrons. The hidden sector particles are charged under a discrete Z3 symmetry

with the charge assignments as � : +1, �1 : +1, �̃1 : �1, �2 : +1, �̃2 : �1, a : 0. The Lagrangian (other than the kinetic

terms) that respects the symmetry is

m
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†
�+m1�1�̃1 +m2�2�̃2 + y1��1�1 + y2��2�2 +

@
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a

fa
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†
1�̄µ�2 +

@
µ
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†
1�̄µ�̃2 + c.c. (7)

�1, �̃1 are degenerate in mass with mass m1 and so are �2, �̃2 with a common mass m2. To have � stable, we need to have

the following mass inequality m2 < m1 < m� < 2m2. Then we have ��
†
! �1�

†
1,�1 ! a+ �2 that leads to production of

a’s.

4

We can repeat the same exercise for the case of a 3-body annihilation process. In this case, the

consistency condition is given by:

�ann(z0) = n
2
�(z0)h�v

2
i3�body ⇠

< H(z0) , (8)

where h�v
2
i3�body is the 3-body annihilation cross section. Then we have

h�v
2
i3�body ⇠

< 2 ⇥ 10�18 cm6

s

p
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(1 + z0)6
f
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�

✓
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◆2

⇠
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s
f
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�

✓
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◆2

. (9)

The flux of relativistic  particles coming from the annihilating � DM particles is thus given by:

d�2

dE
=

✓
dN 

dE

◆

0

f
2
�h�vi

8⇡m
2
�

Z
⇢
2
dm(s) dsd⌦ , 2-body, (10)

d�3

dE
=

✓
dN 

dE

◆

0

f
3
�h�v

2
i3�body

24⇡m
3
�

Z
⇢
3
dm(s)dsd⌦ , 3-body. (11)

where, as in the case of decays, we evaluate the DM phase space integrals for each case separately,

reporting them as J
2!2
ann and J

3!2
ann respectively in Appendix A. Considering the flux from the Milky Way

and combining the equations above with the bounds from Eqs. (6) and (9), we get:

�2 ⇠
< 8 ⇥ 109 cm�2s�1

f�

✓
4 keV

m�

◆Z ✓
dN 

dE

◆

0

dE

�
, (12)

�3 ⇠
< 7 ⇥ 105 cm�2s�1

f�

✓
4 keV

m�

◆Z ✓
dN 

dE

◆

0

dE

�
. (13)

Finally, we remark on the interplay between f� and h�vi which, under our assumptions so far,

are independent of each other. One might attempt to evade the bounds above by allowing for a very

large annihilation cross section h�vi during matter-domination while at the same time jettisoning the

requirement that the relic abundance of � be set before matter-radiation equality. E↵ectively, this

implies that �ann > H during matter-domination and the comoving number density of � decreases.

In order to avoid cosmological constraints, one could then expect that the � is only a subdominant

component of all DM. However, since the � particles are being constantly annihilated during matter-

domination, the fraction f� of DM � particles today will be tiny, proportional to 1/h�vi, regardless of

whether the annihilations ever stop (as in a standard freeze-out scenario) or not. Therefore, the flux

�2 / f
2
�h�vi / 1/h�vi will be suppressed and this attempt ultimately fails.

3 Implications for XENON1T

In this section, we will apply the bounds derived in the previous section to the possible explanation

of the XENON1T excess via absorption of relativistic  particles. As shown in Refs. [1], an explanation

based on solar axions is in tension with stellar cooling bounds [21]. We will consider the scenario with

 from the galactic source, i.e., DM decay or annihilation of � particles. Since the observed XENON1T

excess lies around ⇠ 2 keV, we then require m� ⇠ 4 keV. In this case  ’s couplings to dark matter could

be less constrained, yet we will show that even then the simple bounds we derive in the previous section

rule out this scenario.

5

annihilation J-factor: dominated by the MW halo 

)
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We can repeat the same exercise for the case of a 3-body annihilation process. In this case, the

consistency condition is given by:
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The flux of relativistic  particles coming from the annihilating � DM particles is thus given by:
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where, as in the case of decays, we evaluate the DM phase space integrals for each case separately,

reporting them as J
2!2
ann and J

3!2
ann respectively in Appendix A. Considering the flux from the Milky Way

and combining the equations above with the bounds from Eqs. (6) and (9), we get:
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Finally, we remark on the interplay between f� and h�vi which, under our assumptions so far,

are independent of each other. One might attempt to evade the bounds above by allowing for a very

large annihilation cross section h�vi during matter-domination while at the same time jettisoning the

requirement that the relic abundance of � be set before matter-radiation equality. E↵ectively, this

implies that �ann > H during matter-domination and the comoving number density of � decreases.

In order to avoid cosmological constraints, one could then expect that the � is only a subdominant

component of all DM. However, since the � particles are being constantly annihilated during matter-

domination, the fraction f� of DM � particles today will be tiny, proportional to 1/h�vi, regardless of

whether the annihilations ever stop (as in a standard freeze-out scenario) or not. Therefore, the flux

�2 / f
2
�h�vi / 1/h�vi will be suppressed and this attempt ultimately fails.

3 Implications for XENON1T

In this section, we will apply the bounds derived in the previous section to the possible explanation

of the XENON1T excess via absorption of relativistic  particles. As shown in Refs. [1], an explanation

based on solar axions is in tension with stellar cooling bounds [21]. We will consider the scenario with

 from the galactic source, i.e., DM decay or annihilation of � particles. Since the observed XENON1T

excess lies around ⇠ 2 keV, we then require m� ⇠ 4 keV. In this case  ’s couplings to dark matter could

be less constrained, yet we will show that even then the simple bounds we derive in the previous section

rule out this scenario.
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Comparable to the maximal solar axion flux. 



Comments:
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b. Check Assumption 1: Γ < H before matter-radiation equality.
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are independent of each other. One might attempt to evade the bounds above by allowing for a very

large annihilation cross section h�vi during matter-domination while at the same time jettisoning the

requirement that the relic abundance of � be set before matter-radiation equality. E↵ectively, this

implies that �ann > H during matter-domination and the comoving number density of � decreases.

In order to avoid cosmological constraints, one could then expect that the � is only a subdominant

component of all DM. However, since the � particles are being constantly annihilated during matter-

domination, the fraction f� of DM � particles today will be tiny, proportional to 1/h�vi, regardless of

whether the annihilations ever stop (as in a standard freeze-out scenario) or not. Therefore, the flux
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3 Implications for XENON1T

In this section, we will apply the bounds derived in the previous section to the possible explanation

of the XENON1T excess via absorption of relativistic  particles. As shown in Refs. [1], an explanation

based on solar axions is in tension with stellar cooling bounds [21]. We will consider the scenario with

 from the galactic source, i.e., DM decay or annihilation of � particles. Since the observed XENON1T

excess lies around ⇠ 2 keV, we then require m� ⇠ 4 keV. In this case  ’s couplings to dark matter could

be less constrained, yet we will show that even then the simple bounds we derive in the previous section

rule out this scenario.
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Finally, we remark on the interplay between f� and h�vi which, under our assumptions so far,

are independent of each other. One might attempt to evade the bounds above by allowing for a very

large annihilation cross section h�vi during matter-domination while at the same time jettisoning the

requirement that the relic abundance of � be set before matter-radiation equality. E↵ectively, this

implies that �ann > H during matter-domination and the comoving number density of � decreases.

In order to avoid cosmological constraints, one could then expect that the � is only a subdominant

component of all DM. However, since the � particles are being constantly annihilated during matter-

domination, the fraction f� of DM � particles today will be tiny, proportional to 1/h�vi, regardless of

whether the annihilations ever stop (as in a standard freeze-out scenario) or not. Therefore, the flux
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�h�vi / 1/h�vi will be suppressed and this attempt ultimately fails.

3 Implications for XENON1T

In this section, we will apply the bounds derived in the previous section to the possible explanation

of the XENON1T excess via absorption of relativistic  particles. As shown in Refs. [1], an explanation

based on solar axions is in tension with stellar cooling bounds [21]. We will consider the scenario with

 from the galactic source, i.e., DM decay or annihilation of � particles. Since the observed XENON1T

excess lies around ⇠ 2 keV, we then require m� ⇠ 4 keV. In this case  ’s couplings to dark matter could

be less constrained, yet we will show that even then the simple bounds we derive in the previous section

rule out this scenario.
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b.  Check Assumption 1: Γ < H before matter-radiation equality.

Increase <σv>, increase ɸ ?

No. Increase <σv>, Γ > H during matter domination and fɸ decreases. fɸ ~ 1/<σv>. 

We can repeat the same exercise for the case of a 3-body annihilation process. In this case, the

consistency condition is given by:

�ann(z0) = n
2
�(z0)h�v

2
i3�body ⇠

< H(z0) , (8)

where h�v
2
i3�body is the 3-body annihilation cross section. Then we have

h�v
2
i3�body ⇠

< 2 ⇥ 10�18 cm6

s

p
⌦(z0)

(1 + z0)6
f
�2
�

✓
m�

keV

◆2

⇠
< 2 ⇥ 10�34 cm6

s
f
�2
�

✓
m�

keV

◆2

. (9)

The flux of relativistic  particles coming from the annihilating � DM particles is thus given by:

d�2

dE
=

✓
dN 

dE

◆

0

f
2
�h�vi

8⇡m
2
�

Z
⇢
2
dm(s) dsd⌦ , 2-body, (10)

d�3

dE
=

✓
dN 

dE

◆

0

f
3
�h�v

2
i3�body

24⇡m
3
�

Z
⇢
3
dm(s)dsd⌦ , 3-body. (11)

where, as in the case of decays, we evaluate the DM phase space integrals for each case separately,

reporting them as J
2!2
ann and J

3!2
ann respectively in Appendix A. Considering the flux from the Milky Way

and combining the equations above with the bounds from Eqs. (6) and (9), we get:

�2 ⇠
< 8 ⇥ 109 cm�2s�1

f�

✓
4 keV

m�

◆Z ✓
dN 

dE

◆

0

dE

�
, (12)

�3 ⇠
< 7 ⇥ 105 cm�2s�1

f�

✓
4 keV

m�

◆Z ✓
dN 

dE

◆

0

dE

�
. (13)

Finally, we remark on the interplay between f� and h�vi which, under our assumptions so far,

are independent of each other. One might attempt to evade the bounds above by allowing for a very

large annihilation cross section h�vi during matter-domination while at the same time jettisoning the

requirement that the relic abundance of � be set before matter-radiation equality. E↵ectively, this

implies that �ann > H during matter-domination and the comoving number density of � decreases.

In order to avoid cosmological constraints, one could then expect that the � is only a subdominant

component of all DM. However, since the � particles are being constantly annihilated during matter-

domination, the fraction f� of DM � particles today will be tiny, proportional to 1/h�vi, regardless of

whether the annihilations ever stop (as in a standard freeze-out scenario) or not. Therefore, the flux
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�h�vi / 1/h�vi will be suppressed and this attempt ultimately fails.

3 Implications for XENON1T

In this section, we will apply the bounds derived in the previous section to the possible explanation

of the XENON1T excess via absorption of relativistic  particles. As shown in Refs. [1], an explanation

based on solar axions is in tension with stellar cooling bounds [21]. We will consider the scenario with

 from the galactic source, i.e., DM decay or annihilation of � particles. Since the observed XENON1T

excess lies around ⇠ 2 keV, we then require m� ⇠ 4 keV. In this case  ’s couplings to dark matter could

be less constrained, yet we will show that even then the simple bounds we derive in the previous section

rule out this scenario.
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where, as in the case of decays, we evaluate the DM phase space integrals for each case separately,

reporting them as J
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Finally, we remark on the interplay between f� and h�vi which, under our assumptions so far,

are independent of each other. One might attempt to evade the bounds above by allowing for a very

large annihilation cross section h�vi during matter-domination while at the same time jettisoning the

requirement that the relic abundance of � be set before matter-radiation equality. E↵ectively, this

implies that �ann > H during matter-domination and the comoving number density of � decreases.

In order to avoid cosmological constraints, one could then expect that the � is only a subdominant

component of all DM. However, since the � particles are being constantly annihilated during matter-

domination, the fraction f� of DM � particles today will be tiny, proportional to 1/h�vi, regardless of

whether the annihilations ever stop (as in a standard freeze-out scenario) or not. Therefore, the flux

�2 / f
2
�h�vi / 1/h�vi will be suppressed and this attempt ultimately fails.

3 Implications for XENON1T

In this section, we will apply the bounds derived in the previous section to the possible explanation

of the XENON1T excess via absorption of relativistic  particles. As shown in Refs. [1], an explanation

based on solar axions is in tension with stellar cooling bounds [21]. We will consider the scenario with

 from the galactic source, i.e., DM decay or annihilation of � particles. Since the observed XENON1T

excess lies around ⇠ 2 keV, we then require m� ⇠ 4 keV. In this case  ’s couplings to dark matter could

be less constrained, yet we will show that even then the simple bounds we derive in the previous section

rule out this scenario.
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c. Check Assumption 2: <σv> velocity independent. Larger cross section today!  

Considerably much larger flux allowed. Yet an enhanced cross section is subject to 
cosmological bounds, e.g. CMB bound on Sommerfeld enhancement (Bringmann et.al 
2018). A possible caveat: more work needs to be done. 

4 Caveats to our bounds

Although our upper bounds on flux of relativistic particles from DM decays or annihilations in Sec. 2

are quite general, one could still devise complicated models to get around them. We will discuss one

such possibility below.

For the DM annihilation scenario we implicitly assume that h�vi is velocity-independent and does

not change with time. Yet it is known that h�vi could be velocity dependent, thereby changing as a

function of redshift. In particular, if h�vi = h�vi|z0(v/v0)�n, where v0 is the average velocity of the

DM particles at z0 (e.g. arising from adiabatic cooling in the case of a thermal origin), then the upper

bound on the cross section given by Eq. (6) can be transformed into a bound on the cross section for

DM particles in the galaxy (where v ⇠ 10�3):

h�viMW ⇠
< 10�18 cm3

s

(103v0)n

(1 + z0)3/2
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We can see that for the n = 1 case, or equivalently � / 1/v
2, the upper bound on the cross section in the

Milky Way, and therefore the flux of  from DM annihilations, could be enhanced at most by a factor

of 103 (for v0 ⇠ 1). Meanwhile, assuming the standard non-relativistic freeze-out value of v0 ⇠ 0.1 at

z0 ⇡ 3000, the enhanced flux becomes,
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Then, in principle, 1/v
n-enhanced DM annihilations with n > 1 could produce a large enough new flux

of relativistic bosons to account for the XENON1T excess. However, it’s important to note that these

annihilations will also be subject to additional observational constraints depending on the exact details

of the particle physics model. For example, the � / 1/v
2 behavior of the cross section is a characteristic

feature of particle physics models with Sommerfeld enhancement and requires the presence of a light

mediator. And as shown in ref. [29], the enhanced cross section of such models during the Dark Ages is

subject to various cosmological constraints. Thus, velocity enhanced annihilations serve as a promising

production mechanism for relativistic DM particles, particularly in context of the XENON1T excess. We

leave a detailed study of their cosmological and astrophysical implications to future work.

5 Conclusion and Outlook

Absorption of light bosons, DM or not, is an important target at direct detection. In this article,

we explore a new scenario in which DM decays or annihilations could produce very weakly-coupled

relativistic light bosons, axions or dark photons. We find several conservative upper bounds on the flux

of the bosons at Earth as a function of DM mass and fraction, using simple requirements of DM that

apply to generic models. These bounds are independent of the couplings and species of the bosons. With

these bounds, one could show that adding this additional source of bosons with keV energy to the solar

source could only lead to a small number of events (. 1) associated with absorption of bosons at direct

detection, assuming that the bosons’ coupling to the SM saturates current constraints.

The simple bounds we derive will hold, regardless of whether the XENON1T excess survives scrutiny

with data from upcoming experiments. For the present XENON1T excess, the bounds corner one class

of possible explanations: absorption of relativistic bosons, assuming that all current constraints on the
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these bounds, one could show that adding this additional source of bosons with keV energy to the solar

source could only lead to a small number of events (. 1) associated with absorption of bosons at direct

detection, assuming that the bosons’ coupling to the SM saturates current constraints.

The simple bounds we derive will hold, regardless of whether the XENON1T excess survives scrutiny

with data from upcoming experiments. For the present XENON1T excess, the bounds corner one class

of possible explanations: absorption of relativistic bosons, assuming that all current constraints on the

8



The conservative upper bounds derived are independent of the experimental excess, 
using simple requirements of DM that apply to generic models. 

Now check whether that helps with the explanation of Xenon1T excess. 



Axions

To get the number of observed events, we need a flux larger by a factor of 104. 

On the other hand, the galactic source is at most comparable to the maximal solar 
axion flux. Could not help explain the excess. 

Given the stellar bounds, the solar axion flux on earth is at most 
� ⇠ 1010 cm�2s�1
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Dark Photons

3.1 Axions

To use the solar axion, e.g., ABC axions, to explain the XENON1T excess, one needs to have axion-

electron coupling gae ⇠ (2–3)⇥10�12 [1], which is about one order of magnitude above the bound from

cooling of red giant [13]5. Now let us consider relativistic axions from DM decays or annihilations. In

this case, the number of absorption events at direct detection is proportional to �DM g
2
ae with �DM being

the flux of axions from DM decays or annihilations as contrasted to g
4
ae for ABC axions (with two powers

of g
2
ae from solar production and two powers of g

2
ae from absorption). Requiring gae to satisfy the current

red giant bound, we have the absorption rate at direct detection reduced by a factor of 100 compared to

the ABC axion explanation. Thus we need �DM ⇠ 100�ABC(gae = 2 ⇥ 10�12) to be able to account for

the excess. For the ABC axion, the di↵erential flux sharply peaks at (1–2) keV with [22]

d�ABC

dE

����
peak

⇠ 4 ⇥ 1011 cm�2s�1keV�1

✓
gae

2 ⇥ 10�12

◆2

. (14)

Integrating over d�ABC
dE over the relevant energy bins (1–7) keV, we find that a flux of

�DM ⇠ 1014 cm�2s�1 (15)

is required to explain the excess, a value at least three orders of magnitude above our estimated upper

bounds in Eq. (2) and Eqs. (12) and (13). Equivalently, this tells us that the maximal number of axion

absorption events at XENON1T that could have a DM origin is ⇠ 0.05, assuming a value of gae that

saturates the red giant bound and a flux �DM saturating the bound in Eq. (12).

3.2 Dark Photon

A dark photon could kinetically mix with ordinary photon through a coupling ✏F
µ⌫

F
0
µ⌫/2 [23], where

✏ is the mixing parameter and F, F
0 are the field strengths of the U(1)EM and U(1)d gauge groups

respectively.

There are two possible scenarios of dark photons [24]:

• Stueckelberg case (SC): this is the limit in which the dark Higgs responsible for the breaking of the

dark U(1)d is so heavy that it is decoupled from the low energy e↵ective field theory.

• Higgs case (HC): in this scenario the dark Higgs is light and there is no decoupling.

They have quite di↵erent solar production and direct detection properties. On the one hand, in terms

of production, we have [24]:

SC : �
(⇤)

! �
0; HC : �

(⇤)
! �

0
h
0
, (16)

where �
0 is the dark photon and h

0 is the light dark Higgs. Note that for the HC scenario, it is an

associated production and the Sun could produce both dark photons and dark Higgs. For the SC

scenario, the production is dominated by resonances, which are e↵ective in the (10 � 300) eV energy

range, after which bremsstrahlung dominates, yielding an exponentially decaying flux [25, 26]. On the

other hand, HC dark photons and dark Higgses have a pretty flat spectrum of flux extending to above

keV [24].

On the other hand, in terms of direct detection, we have

SC : �
0 + atom ! atom+ + e

�; HC : �
0(h0) + atom ! h

0(�0) + atom+
e
�
. (17)

5For a handy compilation of the latest axion bounds, see github.com/cajohare/AxionLimits.
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Dark Photons

Note that in the first case a dark photon is absorbed and ionizes the atom, while in the second case a

dark photon (dark Higgs) is absorbed while a dark Higgs (dark photon) appears. In other words the HC

is a scattering process. We will focus below on the SC scenario, which is the purely absorption case.

There are strong constraints on ✏ as a function of dark photon mass. The constraints for dark photon

with mass around or below keV is nicely summarized in Fig.12 of ref. [27]. The expected number of

events, before accounting for the detector e�ciency) as a function of incoming flux, ✏, and m�0 has been

computed in refs. [24, 25] (summarized in sec 3.2 of ref. [28]). Assuming that ✏ saturates the current

constraints for a given m�0 , we show the expected number of events at XENON1T (without taking

considering detector e�ciency) as a function of m�0 in Fig. 1. We consider three possibilities for the flux

of relativistic �0:

• A monochromatic flux from DM decays or annihilations: d�DM
dE / �(E � E0), where E is the dark

photon’s energy, and we take E0 = 2 keV, the energy where the excess is observed;

• A box-shaped flux from DM decays or annihilations: d�DM
dE / rect(E), where the rectangular

function satisfies rect(E) = 1 when 1 keV < E < 4 keV and is zero everywhere else;

• The solar flux from bremsstrahlung of dark photons in the Sun. The di↵erential flux is given in

Eq. (4.11) of ref. [26]. Note that it is exponentially suppressed when E & 0.3 keV.

From Fig. 1, we see that the solar flux could only lead to at most 0.2 events. Even if we consider possible

fluxes with DM origins, we could still have at most ⇠ 0.1 events assuming that the flux saturates the

bounds in Eq. (2) and Eqs. (12) and (13), regardless of whether the flux is monochromatic or box-shaped.

We have taken
R ⇣

dN 
dE

⌘

0
dE = 1, which more generally could be of order ⇠ O(few), without changing

our conclusions.
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Figure 1: The maximal number of events as a function of dark photon mass, with ✏ saturating its current

upper bounds, for a total flux, for the transverse (blue) and longitudinal (red) modes, of 1010 s�1cm�2.

This corresponds to largest bound we found for the  flux, Eq. 2, taking
R ⇣

dN 
dE

⌘

0
dE = 1. The solid

(dashed) lines represent the case of a monochromatic (box-shaped) spectrum centered at E = 2 keV

(between 1–4 keV). The dot-dashed green line corresponds to the bremsstrahlung flux of the longitudinal

modes from the Sun.
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1. Unlike the axion case, the galactic source of 
relativistic dark photons could dominate over 
the solar source. 

2. Given the general bounds we derive before, 
the galactic source could only lead to O(0.1) 
events (compared to ~50 observed events). 
The only possible exception is the velocity 
dependent annihilation cross section.



Conclusions
Clearly we need more experimental efforts to confirm or rule out the Xenon1T excess.

Independent of Xenon1T excess, we have got some conservative generic upper bounds 
on galactic flux of relativistic weakly-coupled bosons. They could be comparable (axion 
case) or dominate over (dark photon case) the solar flux. 

Questions for experimentalists: 

Any other experimental information (e.g., in terms of S1:scintillation/S2:ionization) to 
distinguish between relativistic and non-relativistic particles?   

Any way to collect directional information to tell the origin of the incoming particles?  



Thank you ! 


