
“Deep” Dive in 𝑏 → 𝑐
Anomalies: 

Can we Automatize Model-Selection?

Sunando K. Patra

Bangabasi Evening College, Kolkata

With: Soumitra Nandi, Shantanu Sahoo, S. Bhattacharya (arXiv:2008.04316)



𝑰𝒏𝒗𝒆𝒓𝒔𝒆 𝑷𝒓𝒐𝒃𝒍𝒆𝒎

2

Model

Observables

Forward Problem

Inverse Problem

Physical properties, 
Unknown parameters

Measurements, 
Experimental Data



𝑰𝒏𝒗𝒆𝒓𝒔𝒆 𝑷𝒓𝒐𝒃𝒍𝒆𝒎

3

Observables

Forward Problem

Inverse Problem

Physical properties, 
Unknown parameters

Measurements, 
Experimental Data

Model 1, Model 2, … 



𝑰𝒏𝒗𝒆𝒓𝒔𝒆 𝑷𝒓𝒐𝒃𝒍𝒆𝒎 (𝒇𝒐𝒓 𝑫𝒖𝒎𝒎𝒊𝒆𝒔 𝒍𝒊𝒌𝒆 𝒎𝒆)

4

Observation Models

1.?

2.
?



𝑰𝒏𝒗𝒆𝒓𝒔𝒆 𝑷𝒓𝒐𝒃𝒍𝒆𝒎 (𝒇𝒐𝒓 𝑫𝒖𝒎𝒎𝒊𝒆𝒔 𝒍𝒊𝒌𝒆 𝒎𝒆)

5

Reality Image: Diet Wiegman



Model Selection
• Q: Which is the best model to explain the data?

• Ans: Whichever has minimum prediction error, i.e., 
optimum Bias and Variance.

• Data → Statistical Inference → Model Selection

• Cross-Validation:
• Powerful, reliable but computationally expensive
• Draws on predictive error ⇒ can detect under and 

overfitting.

• Caveats: 
1. Error distribution to be known 
2. Small data-set → becomes unstable 

[Beleites et al, ACA 760, 25 (2013), G. Varoquaux, (2017), arXiv:1706.07581 [q-bio.QM].]
3. Small data-set +  Comparable model size ⇒ No chance 

of doing anything!
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• What to do for 𝒃 → 𝒄𝝉𝝂 then?
• 5 𝐶𝑊’s (Wilson Coefficients) → 𝐶𝑉1

, 𝐶𝑉2
, 𝐶𝑆1

, 𝐶𝑆2
, 𝐶𝑇

• Each one complex → total 10 parameters
• 4 Observables: 9 Data-points (2018)

• We had used 𝐴𝐼𝐶𝐶 arXiv:1805.08222[EPJC 79, 268 (2019)]

Alternatives?
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Aritra is going to talk about these 
methods and their shortcomings in 
more detail… LOOCV, 𝐴𝐼𝐶𝑐 etc.



Motivations

• No criterion tells the whole truth.

• All unstable for small sample sizes

• Depends on data at hand, whereas model 
predictions are available → have to redo everything 
for each change in data

• Depends on the MLE
⇒ no info. about span (uncertainty) of the data-
dist. 
⇒ Proclivity to select simpler models

• *Bayesian Model Selection?*



(Ad Hoc) Bayesian Model Selection

• No ‘true’ model exists → data-distribution is ‘true’

• Information lost to approximate a posterior 𝑃 with 
a prior 𝑄
• This loss can be quantified by some ‘divergence’ 

between 𝑃 and 𝑄

• Popular choice: Kullback–Leibler divergence (𝑫𝑲𝑳)
• Related to MLE, AIC, and cross-validation:

more details in paper…

1. Find Bayesian parameter-space for all models

2. Find the predicted distributions of observables

3. Calculate 𝐷𝐾𝐿 for them

4. Lowest 𝐷𝐾𝐿 → Best Model



𝑹 𝑫 − 𝑹(𝑫∗) Status (2019)
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𝑹 𝑫 − 𝑹(𝑫∗) Status (2019)
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SM: 0.2601 ±0.0036

New Lattice: arXiv:2007.06956



Complexity of Inverse Problem
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Complexity of Inverse Problem
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Complexity of Inverse Problem
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•More observables → better selection, 
but more improbable to visualize.



Proposal

Model 1 Theory

Model j Theory

Model 2 Theory

Prediction
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Probable Inverse Functions

Model p (% prob)> Model q (% prob)> Model r (% prob), 
… 

Data 

k

Data 

2

Data 
1

Classifier



Probable Inverse Functions

Model Parameter 
Values

Data 

k

Data 

2

Data 
1

PredictorSpecific
Model



Neural Network: SNN
• Self-Normalizing Neural-networks: 

proposed in 2017 [Klambauer et al, arXiv:1706.02515]

• Solves gradient-vanishing/exploding problem of 
traditional Fully-Connected-Networks

• Enables ‘deep’ networks 
⇒ Performance ≥ shallow algorithms

• Special activation function: SELU

• Variation remains normalized over the whole 
network.

• (Modified) Dropout layers possible 
⇒ Enables Regularization, *Bayesian Networks*



Neural Network: SNN
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SNN → Ensemble SNN
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SNN → Ensemble SNN
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SNN → Ensemble SNN



Classification Results



Predictions:  Test Model - 15



Observables:



Predictions + Classification



Predictions + Classification



Future:  This mode

• There are other, unmeasured observables:

1. 𝐵 → 𝐷(∗)𝜏𝜈: 𝒜𝐹𝐵
(∗)

, 𝑃𝜏(𝐷)

2. Λ𝑏 → Λ𝑐𝜏𝜈𝜏 : ℛΛ
ℓ , 𝒜𝐹𝐵

Λ

3. 𝐵𝑐 → 𝐽/Ψ𝜏𝜈𝜏 : 𝒜𝐹𝐵
J/Ψ

, 𝑃𝜏(J/Ψ) , 𝐹𝐿(J/Ψ)

4. And updates on all present ones…

• We trained another full set of classifier and 
predictor SNNs for all ‘models’… because we can!
• Their tests will only happen when data appears…

• In the mean time, let’s see what happens to the 
predictions with future luminosities: 
(central values kept same, uncertainties decreased)

29



Future:  This mode



Future:  Other observables?
• Global 𝒃 → 𝒔 ℓℓ ?

• 9 𝐶𝑊’s (Wilson Coefficients) →
𝐶7

′ , 𝛥𝐶9, 𝐶9
′ , 𝛥𝐶10, 𝐶10

′ , 𝐶𝑆, 𝐶𝑆
′, 𝐶𝑃 , 𝐶𝑃

′

• If all are Complex → 1022 combinations
• > 200 obs. ⇒ Cross Validation, Bayesian Model 

Selection possible
• Enough data for full classification and precise prediction:

Preliminary tests: > 99% accuracy
• Varying network structure, calculating prediction error –

much more important.

• Electroweak Data + Higgs Decays → SMEFT model 
independent predictions?

• Why stop there? Compare classes of BSM models…
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For Now:
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• Play around with our trained networks 
→ classifiers, predictors and Bayesian Results…

https://github.com/FlavorIITG/MLResourcesForSemileptonic-b2c

• An interactive web applet will come soon … 

https://github.com/FlavorIITG/MLResourcesForSemileptonic-b2c
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Back-Up: Error-Rate Plots
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Back-Up: Loss-Rate Plots
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Back-Up: Other Properties
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Back-Up: Other Properties
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Back-Up: Confusion Matrices
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Back-Up: 𝒃 → 𝒄
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Back-Up: 𝑴𝒐𝒅𝒆𝒍𝒔
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Back-Up: 𝑴𝒐𝒅𝒆𝒍𝒔


