Direct and Indirect Probes of Seesaw

Manimala Mitra

Institute of Physics (IOP), Bhubaneswar

Anomalies2020, IIT Hyderabad

Outline:

Origin of Neutrino Masses, Mixings and Discovery Prospects

• Beyond Standard Models (Heavy neutrinos- Type-I/ Inverse, Type-II And Left-Right Symmetry)

- Collider searches
- Non-collider searches

Neutrino Masses and Mixings ?

eV neutrino mass and mixing from oscillation and non-oscillation experiments

Oscillation Mass square differences and mixings $\Delta m_{21}^2 = (7.05 - 8.14) \times 10^{-5} \,\mathrm{eV}^2$ $|\Delta m_{31}^2| = (2.41 - 2.60) \times 10^{-3} \,\mathrm{eV}^2$ Large angle $\theta_{12} \sim 34.5^\circ, \theta_{23} \sim 47.7^\circ$ $heta_{13} \sim 8.41^\circ$ (daya bay, reno) Non-zero

P. F. de. Salas et al., arXiv: 1708.01186

Non-Oscillation

Sum of neutrino masses

Bound from cosmology

 $\Sigma m_i < \mathcal{O}(0.17-0.72) \quad \text{eV}$

(Planck Collaboration, arXiv 1502.01589)

Can not be explained with SM without adding any additional particle

Major Questions

Origin of Neutrino Mass

Seesaw

Minkowski, 1977; Gell-mann, Raymond, Slansky- 1979,

Yanagida 1979, Mohapatra, Senjanovic 1980

Contd:

- R-parity violating supersymmetry-(Masiero, 1982; Santamaria, Valle, 1987; Romao, Valle, 1992; Borzumati, 1996; B. Mukhopadhyaya, S Roy, F Vissani, PLB 1998, Anjan S Joshipura, Sudhir K Vempati, PRD 60, 1999...)
- Loop generated mass? Radiative inverse seesaw (A. Zee, 1980; A. Zee, K. S. Babu 1988; D, Choudhury et al., PRD 1994; Dev, Pilaftsis, 2012...)

• Others—dimension 7 $\frac{(LLHH)HH}{\Lambda^3}$ operators etc (K.S. Babu et al.,, 2009)

• Additional gauge bosons W_R and Z'. $M_{W_R} \propto \langle \Delta_R \rangle$

Natural way to embed the sterile neutrinos

Detection Prospects

Wide detection prospects at direct and indirect search experiments

Heavy neutrino mass $M \sim {\rm eV}\text{-}\ {\rm GUT}$ scale

- ▶ Detection \rightarrow Collider, Oscillation, Peak searches, Kink, $(\beta\beta)_{0\nu}$ -decay,...
- And \rightarrow LFV processes, Non-unitary effect,...

Sterile Neutrino:

Multilepton, multijet final states

From arXiv: 1612.02728, S. Antusch et al.,

Neutrinoless double beta decay

Probing lepton number violation

Sterile Neutrino Contribution

N Mix with light SM neutrino ν with mixing V and mass M

 $\left(\text{ Mitra, Senjanović and Vissani, Nucl Phys B856 (2012) 26-73} \right)$

 d_L

 W_L

 W_L

 ν_L

 N_R

 ν_L

Half-life
$$\frac{1}{T_{1/2}} = G_{0\nu} \left| \mathcal{M}_{\nu} \eta_{\nu} + \mathcal{M}_{N} \eta_{N} \right|^{2}$$

$$\eta_{\nu} = U_{ei}^2 m_i/m_e, \ \eta_N = V^2 m_p/M$$

 $e_{\overline{L}}$

 $e_{\overline{L}}$

$$M_i^2 > p^2 \sim (200)^2 \,{\rm MeV^2}; \, p \rightarrow {\rm intermediate}$$
momentum

Controlled by V and M

Bounds:

Limits on active-sterile neutrino mixing V from neutrino mass, $(\beta\beta)_{0\nu}$ -decay, beam dump experiments and others...

- Light neutrino mass $V \sim 10^{-5}/\sqrt{M}$.
- \blacktriangleright For M=100 GeV, $V\sim 10^{-6} \rightarrow$ extremely small
- Experimental constraints $\rightarrow (\beta\beta)_{0\nu}$ -decay, beam dump experiments. $(\beta\beta)_{0\nu}$ -decay \rightarrow stringent.

M. Mitra, S. Pascoli, S. Wong, Phys. Rev. D 90 (2014) 9, 093005

Collider signatures \rightarrow lepton channels

- Like sign/ different flavor diliptons $l^{\pm}l^{\pm}/l^{\pm}l'^{\mp} + 2j$
- Trilepton channels $l^{\pm}l^{\mp}l^{\pm} \rightarrow$ For Dirac neutrinos N_R
- Lepton number violating $l^{\pm}l^{\pm} \rightarrow$ Proof of heavy Majorana neutrinos N_R

Low Mass Sterile Neutrino - Boosted Regime:

Production from meson decay

Lepton Jet:

Discovery Reach:

High Mass Sterile Neutrino:

VLHC Prediction

Future Lepton Collider

Phys.Rev.D 100 (2019) 1, 015012, S. Chakraborty, S. Shil and M. Mitra

Collider Search:

Low Mass Sterile Neutrino - LNV Meson Decays:

E. J. Chun, A. Das, S. Mandal, M. Mitra, and N. Sinha-PRD 100 (2019) 9, 095022

- The basic framework is simple, but conservative. Production and decay of heavy neutrinos through active-strile neutrino mixing.
- Stringent constraints on the mixing parameter
- A large mixing requires cancellation in the light neutrino mass matrix

Large Yukawa

Models with extended gauge sectors or particle contents Higgs triplet

Gauged B-L)
$$\rightarrow$$
 (production via z')

Left-Right symmetry \rightarrow production via W_R

Two Higgs doublet model $| \rightarrow \rangle$

Heavy Neutrino, BSM Gauge boson WR are present, enriched gauge sector

ATLAS-LHC Search for Electron+Fat Jet

Left Right Symmetry

- Collider
- Neutrinoless Double Beta Decay
- Meson Decays
- charged lepton flavor violation

 e_R^-

Complementarity to LHC

J. Chakrabortty, H. Zeen Devi, S. Goswami, JHEP 08 (2012) 008

P. S. Bhupal Dev, S. Goswami, M. Mitra and W. Rodejohann, Phys. Rev. D 88, 091301 (2013)

R.Awasthi, A. Dasgupta and M. Mitra, arXiv: 1607.03504

 $0\nu\beta\beta \rightarrow$ Complementary to LHC

However, LHC puts stringent bound in the TeV range 31

Lepton Number Violating Meson Decays

LHC search and LNV meson decays are complimentary probes

S. Mandal, M. Mitra and N. Sinha

Collider- J. Gluza and T. Jelinski, Phys. Lett. B 748 (2015); P. S. Bhupal Dev, R. N. Mohapatra, Y. Jhang, JHEP 11 (2019) 137, Arindam Das et al., J.Phys.G 47 (2020) 1, 015001, S. Antusch et al., Mod.Phys.Lett.A 34 (2019) 07n08, 1950061

Heavy Neutrino Production from Leptoquark

S. Mandal, M. Mitra, N. Sinha *Phys.Rev.D* 98 (2018) 9, 095004, D. Das, M. Mitra, S. Mondal, K. Ghosh, *Phys.Rev.D* 97 (2018) 1, 015024

Displaced Decays, Fat Jet Signatures, Lepton Flavor Violation, and others

Higgs triplet, Δ (3,2)

$$\Delta = \begin{pmatrix} \delta^+ / \sqrt{2} & \delta^{++} \\ \delta^0 & -\delta^+ / \sqrt{2} \end{pmatrix}$$

The gauge invariant Lagrangian

$$-\mathcal{L}_Y = y_{\Delta} L_L^T C i \tau_2 \Delta L_L + \mu_{\Delta} H^T i \tau_2 \Delta^{\dagger} H + M_{\Delta} T r (\Delta^{\dagger} \Delta) + \text{h.c} + \dots$$

Magg, Wetterich, PLB 94, 61, 1980

• Light neutrino mass
$$M_{
u} \propto y_{\Delta} v$$

$$\blacktriangleright v_{\Delta} = v^2 \frac{\mu_{\Delta}}{M_{\Delta}^2}.$$

Lepton number violation
$$\rightarrow y_{\Delta}, \mu_{\Delta}$$

▶ eV light neutrino mass $\rightarrow y_{\Delta} \sim \mathcal{O}(1)$, $v_{\Delta} = 1 \text{ eV}$

The Yukawa
$$y_{\Delta} = M_{\nu}/v_{\Delta} = U_{PMNS}^T M_d^{\nu} U_{PMNS}^*/v_{\Delta}$$

$$y_{\Delta} = f(\theta_{12}, \theta_{13}, \theta_{23}, m_i, \delta, \alpha_1, \alpha_2, v_{\Delta})$$

Large y_{Δ}

fixed from the PMNS mixing and neutrino mass

 $\mu_{\Delta} \to 0 \longrightarrow v_{\Delta} \to 0$

Massless neutrino

 y_{Δ}, μ_{Δ}

lepton flavor violation

Higgs triplet:

$\Delta(3,2) \to H^{++}, H^+, A^0, H^0_2, H^0_1$

 $LL\Delta \rightarrow \text{Light neutrino mass } M_{\nu} = y_{\Delta}v_{\Delta}. \qquad H^{++}l^{-}l^{-} \sim M_{\nu}/v_{\Delta}.$

$$\Gamma\left(H^{++} \to e_i^+ e_j^+\right) = \frac{|M_{\nu}^{ij}|^2}{8\pi(1 + \delta_{ij})v_{\Delta}^2} M_{H^{++}}$$

$$\Gamma\left(H^{++} \to W^{+}W^{+}\right) = \frac{v_{\Delta}^{2}M_{H^{++}}^{3}}{4\pi v_{0}^{4}} \left(1 - \frac{4M_{W}^{2}}{M_{H^{++}}^{2}}\right)^{1/2} \left(1 - \frac{2M_{W}^{2}}{M_{H^{++}}^{2}}\right)^{2}$$

Different $v_{\Delta} \rightarrow \text{distinctive } H^{++}, H^+$ branching

Decays of doubly charged Higgs
$$\longrightarrow H^{\pm\pm} \to l^{\pm}l^{\pm}$$
 for $v_{\Delta} < 10^{-4} \,\mathrm{GeV}$
 $H^{\pm\pm} \to W^{\pm}W^{\pm}$ for $v_{\Delta} > 10^{-4} \,\mathrm{GeV}$

Yong Du et al., arXiv:1810.09450

Other searches:

Discovery prospect at 14 TeV:

LFV signatures

LFV signatures $\mu \rightarrow 3e, \mu \rightarrow e\gamma, \tau \rightarrow \mu\gamma, \tau \rightarrow 3\mu$

- Branching ratio of $\mu \to 3e \le 10^{-12}$
- Branching ratio of $\mu \to e\gamma \le 5.7 \times 10^{-13}$

Tightly constrained

au sector is less constrained $au o 3\mu, e\mu\mu, e\gamma, \mu\gamma$.

 $\tau \to 3 \mu, e \mu \mu \sim 10^{-8}$

Cross-sections:

Light Higgs, large vev (CLIC with 380 GeV c.m.energy) Heavy Higgs, large vev (CLIC with 3 TeV c.m.energy)

Phys.Rev. D98 (2018) no.1, 015024 , P. Agrawal, M. Mitra, S. Shil, S. Niyogi and M. Spannowsky

Two mass ranges

Heavy Higgs at 3 TeV:

 $M_{H^{\pm\pm}} = 800 \text{ GeV-1120 GeV}$ discovery with $\mathcal{L} = 39 - 94 \text{ fb}^{-1}$

- Major observations in nature ~ Neutrino masses and mixings
- Low scale neutrino mass models
- Wide detection prospects at different direct and indirect experiments
- Collider searches, neutrinoless double beta decay, meson decays
- New signatures ~ Boosted Topology, Long lived particle search
- Challenging corners to probe

Thank You

13 TeV Result:

Collider Searches (LHC)

 $m_N \sim 100 \ {\rm GeV} \rightarrow {\rm collider \ sensitive}$

Heavy Majorana Decay

• To gauge bosons $N \to lW$ and $N \to Z\nu$. To Higgs $N \to \nu H$

Contd:

ATLAS 13 TeV search with $\Delta R > 0.3$ for $l^{\pm}l^{\pm}jj$ is not applicable

Boosted RHN:

ATLAS Collaboration, Phys. Lett. B 798 (2019) 134942

RHN Searches via Displaced Decays?

Discovery Reach:

LHC 13 TeV $3000 \, {\rm fb}^{-1}$

Other LNV Searches:

Meson decay and Collider Searches

Lepton number violation in meson system

LHCb collaboration, 2012; LHCb collaboration, 2011; BELLE collaboration, O. Seon et al., 2011.

Also lepton number violating τ decays by BABAR, LHCb

LNV Higgs decays:

Discovery Reach:

A. Maiezza et al., arXiv: 1503.06834

 M_{W_R} in TeV

B. Fuks et al., *Phys.Rev.D* 101 (2020) 7, 075022

Contd:

Atre et al., JHEP **0905**, 030 (2009)

≣ 55 Q Q Q

- Severe constraint from light neutrino mass \rightarrow possible to escape in presence of cancellation in neutrino mass matrix $M_{\nu} = M_D^T M_R^{-1} M_D$ or enhanced global symmetry.
- V_{eN} is tightly constrained from $(\beta\beta)_{0\nu}$ -decay upto TeV scale
- ► The muon and tau sector are less constrained → collider prospect

Contd:

$$\tau^{\pm} \to \mu^{\pm} \mu^{\mp} \mu^{\mp}$$

Experiment	Current	Projected
Belle	2.1×10^{-8}	$(4.7-10) \times 10^{-10}$
BaBar	3.3×10^{-8}	_
FCC-ee	_	$(5-10) \times 10^{-12}$
LHCb	4.6×10^{-8}	$(1.5 - 11) \times 10^{-9}$
ATLAS	3.8×10^{-7}	$(1.8 - 8.1) \times 10^{-9}$
FCC-hh	_	$(3-30) \times 10^{-10}$

$$\tau^{\pm} \to e^{\mp} \mu^{\pm} \mu^{\pm}$$

	$\tau^{\mp} \to e^{\pm} \mu^{\mp} \mu^{\mp}$		$ au^{\mp} ightarrow e^{\mp} \mu^{\mp} \mu^{\pm}$	
Experiment	Current	Projected	Current	Projected
Belle	1.7×10^{-8}	$(3.4 - 5.1) \times 10^{-10}$	2.7×10^{-8}	$(5.9 - 12) \times 10^{-10}$
BaBar	2.6×10^{-8}	_	3.2×10^{-8}	
FCC-ee		$(5-10) \times 10^{-12}$	—	$(5-10) \times 10^{-12}$

The present limit ~ 10^{-8} . LHCb limit similar to Belle. The future sensitivity ~ $10^{-10} - 10^{-12}$. 13 TeV LHC can give stringent limit. LHC limits \rightarrow 8 TeV. Future limits with 13 TeV, 3 ab^{-1} for ATLAS and 50 ab^{-1} with LHCb.

56

Direct vs Indirect:

Neutrinoless Double Beta Decay

 Indirect evidence of BSM models Large Hadron Collider

 Direct evidence of BSM models

 $\frac{\text{Collider} \rightarrow \text{Limited by kinematics}}{0\nu\beta\beta}$

$$\frac{1}{T_{1/2}^{0\nu}} = G_{0\nu} |\mathcal{M}(A, Z) \eta|^2$$

To extract η , need information about NME.

Limited by NME uncertainty

