Ipsita Saha Kavli IPMU

Improved $(g-2)_{\mu}$ measurements and Supersymmetry

MASTER OOGWAY QUOTES

Possibilities:

• EW Sector may be the hiding key to new physics!

• Modest production cross-section, mass bounds from LHC rather weak.

• May show up elsewhere : Dark Matter experiments, $(g-2)_{\mu}$ etc ..

WWW.**ELITECOLUMN.**COM

MSSM Superpotential

$$W_{\text{MSSM}} = \bar{u}Y_uQH_u - \bar{d}Y_dQH_d - \bar{e}Y_eLH_d + \mu H_uH_d$$

Soft Breaking Terms

$$\begin{split} \mathcal{L}_{\text{soft}}^{\text{MSSM}} &= -\frac{1}{2} \left(M_3 \tilde{g} \tilde{g} + M_2 \tilde{W} \tilde{W} + M_1 \tilde{B} \tilde{B} + c \cdot c \right) \\ &- \left(\tilde{u} \, \mathbf{a_u} \, \tilde{Q} H_u - \tilde{d} \, \mathbf{a_d} \, \tilde{Q} H_d - \tilde{e} \, \mathbf{a_e} \, \tilde{L} H_d + c \cdot c \right) \\ &- \tilde{Q}^\dagger \mathbf{m_Q}^2 \, \tilde{Q} - \tilde{L}^\dagger \, \mathbf{m_L}^2 \, \tilde{L} - \tilde{u} \, \mathbf{m_{\tilde{u}}}^2 \, \tilde{u}^\dagger - \tilde{d} \, \mathbf{m_{\tilde{d}}}^2 \, \tilde{d}^\dagger - \tilde{e} \, \mathbf{m_{\tilde{e}}}^2 \, \tilde{e}^\dagger \\ &- m_{H_u}^2 H_u^u H_u - m_{H_d}^2 H_d^* H_d - \left(b H_u H_d + c \cdot c \right) \end{split}$$

EW Gauginos

Neutralino $\begin{array}{c}
\tilde{B} \\
\tilde{W}^3 \\
H_u^0 \\
H_d^0
\end{array}$

Masses and mixing are determined by U(1) and SU(2) gaugino masses M_1 , M_2 and Higgs mass parameter μ .

Neutralino Mass Matrix

Chargino Mass Matrix

$$M_C = \begin{pmatrix} M_2 & \sqrt{2}M_W c_\beta \\ \sqrt{2}M_W s_\beta & \mu \end{pmatrix}$$

LSP in RPC

FOUR PARAMETERS

 $M_1, M_2, \mu, \tan \beta$

Sleptons

Slepton Mass Matrix

$$M_{\tilde{L}}^{2} = \begin{pmatrix} m_{l}^{2} + m_{LL}^{2} & m_{l}X_{l} \\ m_{l}X_{l} & m_{l}^{2} + m_{RR}^{2} \end{pmatrix}$$

$$m_{LL}^{2} = m_{\tilde{L}}^{2} + (I_{l}^{3L} - Q_{f}s_{w}^{2})M_{z}^{2}c_{\beta}^{2}$$

$$m_{RR}^{2} = m_{\tilde{R}}^{2} + Q_{f}s_{w}^{2}M_{z}^{2}c_{\beta}^{2}$$

$$X_{l} = A_{l} - \mu(\tan\beta)^{2I_{l}^{3L}}$$

PARAMETERS

 $M_1, M_2, \mu, \tan \beta, m_{\tilde{L}}, m_{\tilde{R}}$

Constraints

Proper recasting is important.

Direct Searches at LHC

- LHC searches restricted to simplified models
 - sparticles except those relevant to the signal are taken to be decoupled.
- $\tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_2^0$ are taken to be mass-degenerate and purely wino. $\tilde{\chi}_1^0$ is assumed to be purely bino.
- All three generations of sleptons and sneutrinos are assumed mass degenerate. In MSSM: $m_{\tilde{\nu}}^2 = m_{\tilde{l}}^2 + \frac{1}{2} m_Z^2 cos 2\beta$
- Heavier gauginos $\tilde{\chi}_{3}^{0}$, $\tilde{\chi}_{4}^{0}$, $\tilde{\chi}_{2}^{\pm}$ assumed to be decoupled.
- No sensitivity to parameters like $\tan \beta$.

Indirect Constraints

- Muon (g-2).
- WMAP/PLANCK relic density.
- Spin independent direct detection data from XENON/LUX.
- Indirect detection constraints of dark matter.

Searches at the LHC

CheckMATE in brief

J. S. Kim, D. Schmeier, J. Tattersall and K. Rolbiecki, *Comput. Phys. Commun.* **196** (2015), 535-562 [arXiv:1503.01123 [hep-ph]].

M. Drees, H. Dreiner, D. Schmeier, J. Tattersall and J. S. Kim, *Comput. Phys. Commun.* **187** (2015), 227-265 [arXiv:1312.2591 [hep-ph]].

Input for Implementation of new analysis

Model parameter test

<u>Muon (g-2)</u>

• Currently large discrepancy from the SM $> (3\sigma)$.

SM > (3
$$\sigma$$
).
 $a_{\mu}^{exp} - a_{\mu}^{SM} = (28.02 \pm 7.37) \times 10^{-10}$

Kashavarzi, Nomura, Teubner '19

• Assuming upcoming Fermilab Run-I result to have the same central value and reduced exp uncertainty combined data corresponds to 5.4σ discrepancy.

$$a_{\mu}^{exp} - a_{\mu}^{SM} = (28.02 \pm 5.2) \times 10^{-10}$$

New "World average" appeared

- SUSY contributions from Chargino-Sneutrino and Smuon-Neutralino loop
- Contribution $\sim \tan\beta$, can reconcile the anomaly

DM Constraints

Relic Density

Some annihilation channels that could give right relic density:

There can be coannihilations with sparticles of slightly heavier masses:

Direct Detection

Diagrams contributing to SI interactions

Diagrams contributing to SD interactions

A well-tempered bino-wino or bino-higgsino LSP is favorable for chargino co-annihilation while a bino dominated LSP will work for slepton co-annihilation.

Parameter Scanning

Chargino co-annihilation region:

100 GeV
$$\leq M_1 \leq 1$$
 TeV, $M_1 \leq M_2 \leq 1.1 M_1$,
 $1.1 M_1 \leq \mu \leq 10 M_1$, $5 \leq \tan \beta \leq 60$,
 $100 \text{ GeV} \leq m_{\tilde{l}_L} \leq 1 \text{ TeV}$, $m_{\tilde{l}_R} = m_{\tilde{l}_L}$.

Slepton co-annihilation region:

Case-L: SU(2) doublet

100 GeV
$$\leq M_1 \leq 1$$
 TeV, $M_1 \leq M_2 \leq 10M_1$,
 $1.1M_1 \leq \mu \leq 10M_1$, $5 \leq \tan \beta \leq 60$,
 M_1 GeV $\leq m_{\tilde{l}_L} \leq 1.2M_1$, $M_1 \leq m_{\tilde{l}_R} \leq 10M_1$.

Case-R: SU(2) singlet

100 GeV
$$\leq M_1 \leq 1$$
 TeV, $M_1 \leq M_2 \leq 10M_1$, $1.1M_1 \leq \mu \leq 10M_1$, $5 \leq \tan \beta \leq 60$, M_1 GeV $\leq m_{\tilde{l}_R} \leq 1.2M_1$, $M_1 \leq m_{\tilde{l}_L} \leq 10M_1$.

MC, S.Heinemeyer, I.Saha 2006.15157

Chargino Co-annihilation

Upper and lower bounds from $(g-2)_{\mu}$ and LHC searches (for compressed spectrum)

Chargino Co-annihilation

-Slepton-pair production \rightarrow (2*l*+missing E_T) provides important search channel.

Right-sleptons are significantly heavy, Considerable BR for $\tilde{e}_L(\tilde{\mu}_L) \to \tilde{\chi}_1^{\pm} e(\mu)$ Less no. of signal leptons.

Slepton Co-annihilation: Case-L

Slepton Co-annihilation: Case-L Current $(g-2)_{\mu}$ limit Anticip

Reduced limit attributed by significant $BR(\tilde{\chi}_1^{\pm} \to \tilde{\tau}_1 \nu_{\tau})$ and $BR(\tilde{\chi}_2^0 \to \tilde{\tau}_1 \tau)$, $BR(\tilde{\chi}_2^0 \to \tilde{\nu}\nu)$

(3l + missing ET) exclusion limit weakens

Slepton Co-annihilation: Case-R

Right-sleptons are close in mass to LSP.

Small μ is favored, tension between DD and $(g-2)_{\mu}$.

Slepton Co-annihilation: Case-R

Left-sleptons can not be too heavy to have relevant contribution to $(g-2)_{\mu}$.

Get stringent constraint from LHC.

Lowest and highest LSP: chargino coannihilation

	Sample points	→ C1	\mathbf{C}	C3	Sample points	C1	C2	C3
Lowest LSP in Current (g-2)	M_1	133	579	430	$\boxed{ \text{BR}(\tilde{\chi}_2^0 \to \tilde{\tau}_1 \tau) }$	100	100	100
	M_2	144	583	444				
	μ	1329	1081	1024				
	$\tan eta$	5.1	59	52.7	$\left \text{ BR}(\tilde{\chi}_1^{\pm} \to \tilde{\tau}_1 \nu_{\tau}) \right $	100	100	100
	$m_{ ilde{l}_R} = m_{ ilde{l}_R}$	170	678	540				
	$m_{ ilde{\chi}^0_1}$	129	570	423				
	$m_{ ilde{\chi}^0_2}$	150	605	464				
	$m_{ ilde{\chi}^0_3}$	1338	1087	1032				
Highest LSP in Current (g-2)	$m_{{ ilde \chi}_4^0} \sim m_{{ ilde \chi}_2^\pm}$	1341	1093	1036	$\begin{array}{c c} \operatorname{BR}(\tilde{e}_1 \to \tilde{\chi}_1^0 e \\ \to \tilde{\chi}_2^0 e \end{array}$	20	14	16.4
	$n_{ ilde{\chi}_1^\pm}$	150	605	464	$ ightarrow ilde{\chi}_2^0 e$	28	30	28.9
	$m_{ ilde{e}_1, ilde{\mu}_1}$	176	680	542	$\rightarrow ilde{\chi}_1^{\pm} u_e$	52	55	54.6
	$m_{ ilde{e}_2, ilde{\mu}_2}$	176	680	541				
	$m_{ ilde{ au}_1}$	140	582	437				
Highest LSP in Future (g-2)	$m_{ ilde{ au}_2}$	205	765	629				
	$m_{ ilde{ u}}$	159	675	536	$\begin{array}{c c} \operatorname{BR}(\tilde{e}_2 \to \tilde{\chi}_1^0 e \\ \to \tilde{\chi}_2^0 e) \end{array}$	99.9	99.7	99.9
	$\Omega_{ ilde{\chi}}h^2$	0.118	0.121	0.118	$ ightarrow ilde{\chi}_2^0 e)$	0.1	0.3	0.1
	$a_{\mu}^{\mathrm{SUSY}} \times 10^{10}$	21.1	15.6	20.14				
	$\sigma_p^{\rm SI} imes 10^{10}$	0.39	2.3	1.12				

Searches for τ rich final states will be beneficial for further study.

BR in %

Lowest and highest LSP: Slepton coannihilation

Sample points	L1	L2	L3	Sample points	L1	L2	L3
M_1	131	541	508	$\boxed{ \text{BR}(\tilde{\chi}_2^0 \to \tilde{l}_1 l)}$	32	32.4	28
M_2	838	793	515	$ o ilde{ au}_1 au$	17	18.4	17.4
μ	720	1365	1012	$ ightarrow ilde{ u} u$	34.5	49.2	54.6
$\tan \beta$	6.95	56.7	56	$ ightarrow ilde{\chi}_1^0 h$	13	_	-
$m_{ ilde{l}_L}$	149	548	509	$ ightarrow ilde{\chi}_1^0 Z)$	3.43	_	-
$m_{ ilde{l}_R}$	1172	1278	2349				
$m_{ ilde{\chi}^0_1}$	126	533	499				
$m_{ ilde{\chi}^0_2}$	706	816	535				
$m_{ ilde{\chi}_3^0}$	731	1369	1019				
$m_{\tilde{\chi}_4^0} \sim m_{\tilde{\chi}_2^{\pm}}$	889	1374	1025	$BR(\tilde{\chi}_1^{\pm} \to \tilde{\nu}_{l_1} l)$	32	33.2	39.4
$m_{ ilde{\chi}_1^\pm}$	706	816	535	$ o ilde{ u}_{ au_1} au$	17	17	20.4
$m_{ ilde{e}_1, ilde{\mu}_1}$	155	549	511	$ ightarrow ilde{l}_1 u_l$	23.2	31.8	25.2
$m_{ ilde{e}_2, ilde{\mu}_2}$	1173	1279	2349	$ \begin{array}{ccc} & \to \tilde{\tau}_1 \nu_{\tau} \\ & \to W \tilde{\chi}_1^0) \end{array} $	11.7	17.7	15
$m_{ ilde{ au}_1}$	155	534	509	$\rightarrow W \tilde{\chi}_1^0$	16	_	-
$m_{ ilde{ au}_2}$	1173	1286	2350				
$m_{ ilde{ u}}$	135	544	505				
$\Omega_{ ilde{\chi}} h^2$	0.119	0.121	0.12	$BR(\tilde{e}_1 \to \tilde{\chi}_1^0 e)$	100	100	100
$a_{\mu}^{\mathrm{SUSY}} \times 10^{10}$	19.7	14.06	21.1	$BR(\tilde{e}_2 \to \tilde{\chi}_1^0 e$	100	100	99.2
$\sigma_p^{\rm SI} imes 10^{10}$	0.8	0.46	2.13	$\rightarrow \tilde{\chi}_2^0 e$)	_	_	0.5

Sample points	R1	R2	R3	Sample points	R1	R2	R3
M_1	111	525	408	$\boxed{ \text{BR}(\tilde{\chi}_2^0 \to \tilde{l}_2 l)}$	0.72	_	2.4
M_2	352	662	429	$ ightarrow ilde{ au}_2 au$	93.7	96.8	97.6
μ	812	1091	822	$\rightarrow ilde{\chi}_1^0 h$	4.5	2.92	_
$\tan \beta$	20.5	58.5	59	$ ightarrow ilde{\chi}_1^0 Z)$	0.99	_	_
$m_{ ilde{l}_L}$	458	695	794				
$m_{ ilde{l}_R}$	128	591	425				
$m_{ ilde{\chi}^0_1}$	109	518	402				
$m_{ ilde{\chi}^0_2}$	367	685	448	$\mathrm{BR}(\tilde{\chi}_1^{\pm} \to \tilde{l}_1 \nu_l)$	_	-	_
$m_{ ilde{\chi}^0_3}$	823	1098	830	$ o ilde{ au}_2 u_{ au}$	94.3	97	100
$m_{\tilde{\chi}_4^0} \sim m_{\tilde{\chi}_2^\pm}$	828	1105	838	$\rightarrow W \tilde{\chi}_1^0$	5.7	$\boxed{2.8}$	_
$m_{ ilde{\chi}_1^\pm}$	367	685	448				
$m_{ ilde{e}_1, ilde{\mu}_1}$	460	696	795				
$m_{ ilde{e}_2, ilde{\mu}_2}$	136	592	428	$BR(\tilde{e}_1 \to \tilde{\chi}_1^0 e)$	42	95	9.2
$m_{ ilde{ au}_2}$	119	526	406	$\rightarrow \tilde{\chi}_2^0 e$	19.6	1.7	32
$m_{ ilde{ au}_1}$	464	747	807	$\begin{array}{c c} & & & \\ & \rightarrow \tilde{\chi}_2^0 e \\ & \rightarrow \tilde{\chi}_1^{\pm} \nu_e) \end{array}$	38.3	3.2	58.7
$m_{ ilde{ u}}$	453	692	792				
$\Omega_{ ilde{\chi}}h^2$	0.121	0.121	0.121				
$a_{\mu}^{\rm SUSY} \times 10^{10}$	17.5	14.8	17.8	$BR(\tilde{e}_2 \to \tilde{\chi}_1^0 e)$	100	100	100
$\sigma_p^{\rm SI} \times 10^{10}$	0.23	1.2	3.1				

Case-L

Case-R

Lowest & Highest LSP mass in current (g-2): L1, L2 (R1,R2) Highest LSP mass in Future (g-2): L3 (R3)

Target for future collider: ILC/CLIC

Chargino coannihilation

Slepton coannihilation: Case L

Target for future collider: ILC/CLIC

ĩ toann. case-L ILC350 ILC500 ILC1000 CLIC380 ์นี้นี้) [pb] CLIC1500 CLIC3000 10^{-3 ∟} 200 400 600 800 1000 $2m_{\widetilde{\mu}_{i}}$ [GeV]

Slepton coannihilation: Case L

Conclusions

- Direct LHC bounds still have ample room for sub-TeV EW SUSY particles.
- It is possible to constrain the EW MSSM with the help of indirect constraints along with the direct collider limits.
- DM and muon (g-2) constraint put effective upper limit on EW SUSY masses while LHC limits restrict the mass ranges from below.
- LHC exclusion bound strongly depends on EW gaugino composition. Proper recasting of ATLAS/CMS analysis relaxes the existing bound.
- Searches for τ rich final states will be beneficial for further study.
- Future colliders, HL-LHC, ILC/CLIC also have significant prospect for detection.
- We await the new experiments results on muon (g-2) from Fermilab, J-PARC. STAY TUNED!!!

THANKYOU!

BACKUP

$(g-2)_{\mu}$

• Large discrepancy from the SM (more than 3σ):

$$a_{\mu}^{exp} - a_{\mu}^{SM} = (28.02 \pm 7.37) \times 10^{-10}.$$

Keshavarzi, Nomura, Teubner '19

- Important probe for new physics. $\frac{\delta a_l}{a_l} \sim \frac{m_l^2}{\Lambda^2}$.
- SM contributions : QED, weak, hadronic vacuum polarization, hadronic light by light scattering.
- QED : complete calculation upto 5 loops. EW : two loops.

 Aoyama, Hayakawa, Kinoshita, Nio '17, Ishikawa, Nakazawa, Yasu '18, Heinemeyer, Stökinger, Weiglein '04
- Uncertainty dominated by non-perturbative, hadronic sector.

SUSY contributions to $(g-2)_{\mu}$

$$\Delta a_{\mu}(\tilde{W}, \tilde{H}, \tilde{\nu}_{\mu}) \simeq 15 \times 10^{-9} \left(\frac{\tan \beta}{10}\right) \left(\frac{(100 \,\text{GeV})^{2}}{M_{2}\mu}\right) \left(\frac{f_{C}}{1/2}\right),$$

$$\Delta a_{\mu}(\tilde{W}, \tilde{H}, \tilde{\mu}_{L}) \simeq -2.5 \times 10^{-9} \left(\frac{\tan \beta}{10}\right) \left(\frac{(100 \,\text{GeV})^{2}}{M_{2}\mu}\right) \left(\frac{f_{N}}{1/6}\right),$$

$$\Delta a_{\mu}(\tilde{B}, \tilde{H}, \tilde{\mu}_{L}) \simeq 0.76 \times 10^{-9} \left(\frac{\tan \beta}{10}\right) \left(\frac{(100 \,\text{GeV})^{2}}{M_{1}\mu}\right) \left(\frac{f_{N}}{1/6}\right),$$

$$\Delta a_{\mu}(\tilde{B}, \tilde{H}, \tilde{\mu}_{R}) \simeq -1.5 \times 10^{-9} \left(\frac{\tan \beta}{10}\right) \left(\frac{(100 \,\text{GeV})^{2}}{M_{1}\mu}\right) \left(\frac{f_{N}}{1/6}\right),$$

$$\Delta a_{\mu}(\tilde{\mu}_{L}, \tilde{\mu}_{R}, \tilde{B}) \simeq 1.5 \times 10^{-9} \left(\frac{\tan \beta}{10}\right) \left(\frac{(100 \,\text{GeV})^{2}}{m_{\tilde{B}}^{2}, m_{\tilde{B}}^{2}, /M_{1}\mu}\right) \left(\frac{f_{N}}{1/6}\right).$$

$$\frac{f_{N}}{h_{L}} = \frac{h_{L}}{h_{L}} = \frac{h_{L}}{h_{$$

Endo, Hamaguchi, Iwamoto, Yoshinaga'13