Indian Association for the Cultivation of Science

Electron and muon magnetic moments in a supersymmetric L_{μ} - L_{τ} model

Heerak Banerjee

Based on work by HB, Bhaskar Dutta and Sourov Roy, ArXiv: 2009.xxxx

Anomalies 2020, IIT Hyderabad

Motivation

• The experimental observation of the muon magnetic dipole moment stands at a \sim 3.6 σ deviation from its theoretical prediction.

$$\delta a_{\mu}^{exp} = a_{\mu}^{exp} - a_{\mu}^{SM} = 2.74(0.73) \times 10^{-9}$$

• The electron magnetic dipole moment is at a $\sim 2.5\sigma$ deviation from its Standard Model prediction, but in the opposite direction.

$$\delta a_e^{exp} = -8.8(3.6) \times 10^{-13}$$

• Flavor-universality of leptons: both quantities would be of the same sign, and scale by the mass-squared of the corresponding leptons.

$$\frac{\delta a_{\mu}}{\delta a_{e}} = -3.1(1.5) \times 10^{3}$$
 $\frac{\delta a_{\mu}}{\delta a_{e}} \neq \frac{m_{\mu}^{2}}{m_{e}^{2}}$ $\frac{m_{\mu}^{2}}{m_{e}^{2}} = 4.3 \times 10^{4}$

Motivation

- Contribution of extra gauge boson to the lepton magnetic dipole moments (MDMs) are always of the same sign.
 - A. E. Carcamo Hernandez, S. F. King, H. Lee and S. J. Rowley, Phys. Rev. D **101**, no.11, 115016 (2020)
 - N. Haba, Y. Shimizu and T. Yamada, [arXiv:2002.10230 [hep-ph]]
 - C. H. Chen and T. Nomura, [arXiv:2003.07638 [hep-ph]].
 - C. Hati, J. Kriewald, J. Orloff and A. M. Teixeira, JHEP 07, 235 (2020)
- Explanations within SUSY: large, flavor-nonuniversal, or explicitly flavor-violating trilinear soft SUSY-breaking terms.
 - B. Dutta and Y. Mimura, Phys. Lett. B **790**, 563-567 (2019)
- Our attempt: no dependence on flavor violation, flavor-universal Aterms.

SUSY L_u-L_t Model for Electron and Muon (g-2)

Superfields	\hat{L}_{μ}	\hat{E}^c_{μ}	$\hat{L}_{ au}$	$\hat{E}_{ au}^{c}$	$\hat{\eta}$	$\hat{ar{\eta}}$
$U(1)_{L_{\mu}-L_{\tau}}$	1	-1	-1	1	-1	1

$$W = \hat{U}^c Y_u \hat{Q} \hat{H}_u - \hat{D}^c Y_d \hat{Q} \hat{H}_d - \hat{E}^c Y_l \hat{L} \hat{H}_d - \mu \hat{H}_d \hat{H}_u - \mu_\eta \hat{\eta} \hat{\bar{\eta}}$$

- The additional superfields are R-Parity positive and must be equal and oppositely charged under the additional gauge symmetry.
- The leptonic yukawa sector is flavor-diagonal as a consequence of this additional symmetry.
- R-parity is conserved. This rules out additional terms that may still be gauge singlets. We assume zero tree-level kinetic mixing.

SUSY L_u-L_t Model for Electron and Muon (g-2)

$$-\mathcal{L}_{\text{soft}} = \left(\frac{M_{3}}{2}(i\tilde{g})(i\tilde{g}) + \frac{M_{2}}{2}(i\tilde{W})(i\tilde{W}) + \frac{M_{1}}{2}(i\tilde{B})(i\tilde{B}) + \frac{M_{0}}{2}(i\tilde{B}')(i\tilde{B}') + h.c\right) - M_{10}(i\tilde{B})(i\tilde{B}')$$

$$+A\left(y_{u}^{ij}H_{u}\tilde{Q}_{j}\tilde{U}_{i} - y_{d}^{ij}H_{d}\tilde{Q}_{j}\tilde{D}_{i} - y_{l}^{i}H_{d}\tilde{L}_{i}\tilde{E}_{i} + h.c}\right)$$

$$+M_{Q}^{2}\left(\tilde{Q}^{\dagger}\tilde{Q} + \tilde{U}^{c\dagger}\tilde{U}^{c} + \tilde{D}^{c\dagger}\tilde{D}^{c}\right) + \sum_{l=e,\mu,\tau} \left(M_{\tilde{l}_{L}}^{2}\tilde{L}_{l}^{\dagger}\tilde{L}_{l} + M_{\tilde{l}_{R}}^{2}\tilde{E}_{l}^{c\dagger}\tilde{E}_{l}^{c}\right)$$

$$+M_{H_{d}}^{2}H_{d}^{\dagger}H_{d} + M_{H_{u}}^{2}H_{u}^{\dagger}H_{u} + M_{\eta}^{2}\left(\eta^{\dagger}\eta + \bar{\eta}^{\dagger}\bar{\eta}\right) - (B_{0}H_{d}H_{u} + B_{\eta}\eta\bar{\eta} + H.c.)$$

$$\tilde{\chi}^{0} = \left(\tilde{R} \tilde{W}^{0} \tilde{W}^{0} \tilde{H}^{0} \tilde{H}^{0} \tilde{R}' \tilde{\pi} \tilde{\pi}\right) \qquad \tilde{\chi}^{\pm} = \left(\tilde{W}^{-} \tilde{H}^{-}\right) \left(\tilde{W}^{+} \tilde{H}^{+}\right)$$

Lepton anomalous magnetic moments in SUSY

Supersymmetric contribution to lepton MDMs

$$\delta a_l^{MSSM} = 14 \frac{m_l^2}{m_\mu^2} \operatorname{Sign}(\mu) \tan \beta \left(\frac{100 \text{ GeV}}{M_{SUSY}}\right)^2 10^{-10}$$

Lepton anomalous magnetic moments in SUSY

Supersymmetric contribution to lepton MDMs

$$a_{l}^{\tilde{\chi}^{0}=} -\frac{m_{l}}{16\pi^{2}} \sum_{i=1}^{7} \sum_{j=1}^{2} \left[\left(|n_{ij}^{L}|^{2} + |n_{ij}^{R}|^{2} \right) \frac{m_{l}}{12m_{\tilde{l}j}^{2}} F_{1}^{N}(x_{ij}) \right.$$

$$\left. + \frac{m_{\tilde{\chi}^{0}i}}{3m_{\tilde{l}j}^{2}} \operatorname{Real}\left(n_{ij}^{L}n_{ij}^{R}\right) F_{2}^{N}(x_{ij}) \right]$$

$$a_{l}^{\tilde{\chi}^{\pm}} = \frac{m_{l}}{16\pi^{2}} \sum_{k=1}^{2} \left[\frac{m_{l}}{12m_{\tilde{\nu}_{l}}^{2}} \left(|c_{k}^{L}|^{2} + |c_{k}^{R}|^{2} \right) F_{1}^{C}(y_{k}^{l}) \right.$$

$$\left. + \frac{2m_{\tilde{\chi}_{k}^{\pm}}}{3m_{\tilde{\nu}_{l}}^{2}} \operatorname{Real}\left(c_{k}^{L}c_{k}^{R}\right) F_{2}^{C}(y_{k}^{l}) \right]$$

$$\mathcal{L}_{int} = \sum_{i,j} \bar{l}(n_{ij}^{L}P_{L} + n_{ij}^{R}P_{R}) \tilde{\chi}_{j}^{0} \tilde{l}_{i} + \sum_{k} \bar{l}(c_{k}^{L}P_{L} + c_{k}^{R}P_{R}) \tilde{\chi}_{k}^{\pm} \tilde{\nu}_{l} + \text{h.c.}$$

- T. Moroi, Phys. Rev. D 53, 6565 (1996)
- S. P. Martin and J. D. Wells, Phys. Rev. D 64, 035003 (2001)

Lepton anomalous magnetic moments in SUSY

Supersymmetric contribution to lepton MDMs

$$a_l^{ ilde{\chi}_{ ilde{B}}^0},\,a_l^{ ilde{\chi}^\pm} \,\, ext{dominate} \ a_l^{ ilde{\chi}_{ ilde{B}}^0},\,a_l^{ ilde{\chi}^\pm} \propto (M_1,M_2)\mu aneta$$

- The sign of $(M_1, M_2)\mu$ control the sign of SUSY contribution to lepton magnetic moment.
- Wino couples to leptons and sleptons via gauge coupling, unlike the Higgsinos.
- Light Winos can provide for a larger magnetic moment even with heavy Higgsinos, while the converse is not true.
- Heavy Winos require a light Bino to make up for the loss in leptonic MDM.

L_{μ} - L_{τ} Contribution to Muon (g-2)

Supersymmetric contribution to lepton MDMs

$$\delta a_l^{MSSM} = 14 \frac{m_l^2}{m_\mu^2} \operatorname{Sign}(\mu) \tan \beta \left(\frac{100 \text{ GeV}}{M_{SUSY}}\right)^2 10^{-10}$$

Contribution of the L_u-L_τ gauge boson to the muon MDM

Baek, Deshpande, He, Ko, Phys. Rev. D 64,055006 (2001) E. Ma, D. P. Roy and S. Roy, Phys. Lett. B 525, 101 (2002)

Basic Scheme

Supersymmetric contribution to lepton MDMs

$$\delta a_l^{MSSM} = 14 \frac{m_l^2}{m_\mu^2} \operatorname{Sign}(\mu) \tan \beta \left(\frac{100 \text{ GeV}}{M_{SUSY}}\right)^2 10^{-10}$$

• Contribution of the L_{u} - L_{τ} gauge boson to the muon MDM

$$\delta a_{\mu}^{Z'} = \frac{g_X^2 m_{\mu}^2}{4\pi^2} \int_0^1 dz \frac{z^2 (1-z)}{m_{\mu}^2 z + M_{Z'}^2 (1-z)}$$

- Use a negative μ -parameter to turn the SUSY contribution negative. The contribution to muon MDM from Z` is always positive.
- Electron (g-2) is purely made up for by SUSY sources.
- The muon (g-2) has a cancellation between the positive Z` and negative SUSY contribution.

Is it possible?

LHC Constraints:

- Constraints are weaker for SM gauge boson mediated decays of the lightest chargino and associated neutralino. Higgsinos decay with near 100% branching ratio into these modes.
- Constraints are weaker on heavier charginos/neutralinos: smaller branching ratios into specific decay modes.

Is it possible?

LHC Constraints:

- Constraints on slepton masses from their direct pair production.
- Selectron and e-sneutrino masses are required to be low to explain electron (g-2)
- Smuon and the corresponding sneutrino masses are required to be high enough to suppress their negative contribution to muon (g-2).

Is it possible?

LHC Constraints:

- MSSM-like lightest neutralino is stable within collider scales even if they are not the LSP.
- Mass of B` gaugino dominated neutralino is inconsequential.
- LSP is B`ino dominated: decay of NLSP into a photon and LSP may affect BBN/CMB. Decay time constrained to be less than a second.

LHC results used:

- M. Aaboud *et al.* [ATLAS], JHEP **06**, 022 (2018)
- M. Aaboud *et al.* [ATLAS], Eur. Phys. J. C **78**, no.12, 995 (2018)
- M. Aaboud *et al.* [ATLAS], Phys. Rev. D **98**, no.9, 092012 (2018)
- G. Aad et al. [ATLAS], Eur. Phys. J. C 80, no.2, 123 (2020)
- G. Aad et al. [ATLAS], Phys. Rev. D 101, no.5, 052005 (2020)

Application of constraints

$$\sigma^X = \sigma^{\text{ATLAS}} \times F_{\text{M}}(parameters) \times (\prod B_{\text{R}}(parameters))$$

Point excluded if $\sigma^X > \sigma^{\text{UL}}$ for the specific choice of parameters

Values of $\sigma^{\rm ATLAS}$ obtained for specific scenarios from https://twiki.cern.ch/twiki/bin/view/LHCPhysics/SUSYCrossSections

Values of $\sigma^{\rm UL}$ obtained for specific scenarios from https://www.hepdata.net/

Constraints on L_{μ} - L_{τ} parameter space

L_{u} - L_{τ} parameter space:

A very narrow slice of parameter space left to explain muon MDM.
 Now both electron and muon MDM can be explained in this region.

Numerical Scan

Numerical Scan:

Parameter	Range
M _o	100 GeV - 1 TeV
M_{1}	100 GeV - 1 TeV
M_2	100 GeV - 1 TeV
μ	100 GeV - 1 TeV
tan β	10 - 50
${ m M}_{ ilde{L}_e}$	100 GeV - 1 TeV
${ m M}_{ ilde{L}_{\mu}}/M_{ ilde{L}_{e}}$	1 - 100

Broad Results:

Parameter	Range
${ m M}_{ ilde{\chi}_{1}^{0}}$	$\lesssim 400~{\rm GeV}$
$\mathrm{M}_{ ilde{e}}$	$\lesssim 400~{\rm GeV}$
${ m M}_{ ilde{\mu}}/M_{ ilde{e}}$	$\gtrsim 2.5$
${ m M}_{ ilde{\mu}}$	$\gtrsim 600~{ m GeV}$

Results of the scan

Heavy Winos: Bino needs to be light. Tight constraints from pair production of chargino neutralino.

Light Winos: Unless compressed, Bino heavier than Wino. Long-lived charge Wino constrained. Constraint from pair production of Higgsinos.

Results of the scan

Upper limit on selectron and lightest neutralino mass: From (g-2)

Gaps in spectrum: From collider constraints. Binos are light when chargino/selectron is heavy!

Results of the scan

Upper limit on selectron mass, lower limit on slepton hierarchy: From (g-2)

The NL neutralino is the lightest stable (consequential) field as far as the collider and (g-2) is concerned when LSP is B`ino dominated.

Summary

- Possible to explain both lepton MDMs in a simple scenario.
- No lepton-flavor violation required whatsoever.
- A large variety of SUSY scenarios may accommodate the scheme.
 Important gaps observed in allowed spectrum.
- No hierarchy imposed on the slepton masses during scan, but it clearly shows up in the results. However, a hierarchy between second and first generation sleptons of as low as 2.5 is still possible.
- Values of tan β as low as 15 or lower is possible.
- The additional gauge boson may be as light as 10 MeV but no heavier than 200 MeV.
- The additional gauge coupling is constrained to between 0.0005 and 0.002.

Thank You!

Backup slides

Electroweakino constraint scenarios

Five scenarios based on the mass ordering of the Bino, Wino and Higgsino mass parameters, M_1 , M_2 , μ

- 1) $M_2 << M_1, \mu$
 - a) Constraints on long-lived Wino-like chargino.
 - b) Constraints on heavier electroweakinos from pair production of Higgsino-like chargino/neutralinos.
- 2) $\mu << M_1, M_2$
 - a) Weak constraint from pair production of light nearly-degenerate Higgsino-triplet.
 - b) Constraints on heavier Wino-like electroweakinos significant.

Electroweakino constraint scenarios

Five scenarios based on the mass ordering of the Bino, Wino and Higgsino mass parameters, M_1 , M_2 , μ

- 3) $M_1 < M_2 < \mu$
 - a) Constraints from pair production of light wino-like chargino and associated neutralino.
 - b) Constraints on heavier Higgsino-like electroweakinos nearly nonexistent.
- 4) $M_1 < \mu < M_2$
 - a) Same set of constraints, but this time constraints on heavier WINO-like electroweakinos are significant.
- 5) When LSP is B` gaugino dominated, radiative decays of neutral NLSP into a photon and the LSP may affect BBN/CMB. This decay time constrained to be less than 1 second.