A recette for combined explanation of anomalies in 8 Be nuclear transitions and $(g-2)_{e,\mu}$

Chandan Hati

Based on *JHEP* 07 (2020) 235 in collaboration with

Jonathan Kriewald, Jean Orloff and Ana M. Teixeira

Physics beyond the Standard Model (BSM): direction

The only laboratory evidence of BSM physics so far:

neutrino oscillations => neutrino masses

Other strong motivations: observed baryon asymmetry of the Universe, dark matter, dark energy

A number of theoretical caveats/motivations:

hierarchy problem, unification of interactions, gravity, parity violation, ...

Hundreds of theoretical candidates for BSM physics to address neutrino masses and other theoretical motivations: how to proceed?

Guidance from multi-frontier experimental searches

A challenge: lack of any direction from the direct collider searches so far

A particularly interesting alternative is to look for deviations from the SM @ rare processes with no or small SM backgrounds (high intensity frontier)

Charged lepton observables @ high intensity frontier

- lepton moments: (g-2) and EDMs
- charged lepton flavour violation (cLFV)
- lepton number violation (LNV)
- lepton flavour universality violation (LFUV)

• ...

Whats's so special about leptonic observables?

Purely SM:

- strictly massless neutrinos
- conservation of total lepton number and lepton flavours
- leptonic EDMs at 4-loop level $d_e^{\rm CKM} \leq 10^{-38}\,e\,cm$

What if the SM is extended minimally to only include massive Dirac neutrinos?

$$(\nu_{e}, \nu_{\mu}, \nu_{\tau}) \stackrel{U_{\text{PMNS}}}{\leftrightsquigarrow} (\nu_{1}, \nu_{2}, \nu_{3})$$
 $|\nu_{\alpha}\rangle = U_{\alpha i}^{*} |\nu_{i}\rangle$

no LNV, finite but extremely tiny cLFV

EDM at 2-loop level, but still tiny $d_e^{\rm lep} \leq 10^{-35}\,e\,cm$

Therefore any signal from the current or upcoming experiments will be a clear indication of some nontrivial NP

Observables involving charged leptons

Charged lepton sector is currently hosting several lingering tensions with the SM!

Lepton flavour universality violation in CC and NC B-decays

~15% of a SM tree-level effect

~20% of a SM loop effect

- explainable separately by invoking heavy NP: scalar LQ, RPV SUSY, heavy Z',
- only select few scenarios can explain them combined: vector LQ, combinations of scale LQ

see many interesting talks@ **Anomalies 2020**

 \star Long-standing tension in $(g-2)_{\mu}$ explainable by many NP candidates!

Emerging anomaly in $(g-2)_e$ less-trivial to explain when combined with $(g-2)_{\mu}$

Anomalous internal pair creation in ⁸Be transitions

requires light NP ~ 17 MeV

Muon and electron magnetic dipole moment

Muon (g-2):

lingering tension between SM and experiment!

$$\Delta a_{\mu} := a_{\mu}^{\text{exp}} - a_{\mu}^{\text{SM}} = 279(76) \times 10^{-11}$$

$$a_{\mu}^{\mathbf{BNL}} = 116592089(63) \times 10^{-11}$$

$$a_u^{\text{SM}} = 116591810(43) \times 10^{-11}$$

the latest consensus value

current tension @ 3.7σ

upcoming experimental results from Fermilab/JPARC will update the current deadlock

Electron (g-2): interesting development with new measurement of α using Cs

Parker et. al. Science (2018)

$$a_e^{\text{SM}}|_{\alpha_{\text{Cs}}} 1159652181.61(23) \times 10^{-12}$$

$$\Delta a_e := a_e^{\text{exp}} - a_e^{\text{SM}} = -0.88(36) \times 10^{-12}$$

current tension @ 2.5σ

Another developing anomaly?

Minimal scenarios: explaining $(g-2)_{\mu}$ and $(g-2)_{e}$ simultaneously

$$\Delta a_{\mu} := a_{\mu}^{\text{exp}} - a_{\mu}^{\text{SM}} = 279(76) \times 10^{-11}$$

$$\Delta a_e := a_e^{\text{exp}} - a_e^{\text{SM}} = -0.88(36) \times 10^{-12}$$

Heavy NP EFT:

$$\mathcal{H}_{\text{eff}} = c_R^{\ell_f \ell_i} \, \bar{\ell}_f \sigma_{\mu\nu} P_R \ell_i F^{\mu\nu} + \text{h.c.}$$

$$\Delta_{l_i} \sim -\frac{2m_{l_i}}{e} \left(C_R^{l_i l_i} + C_R^{l_i l_i} \right)$$

$$Br[n \ni eY] \sim \frac{m_{l_i}^3}{4\pi l_i} \left(|C_R^{e}|^2 + |C_R^{e}|^2 \right)$$

NP with universal coupling:

Giudice et al JHEP 2012 Crivellin et al. PRD 2018 Calibbi et al JHEP 2020

Ingredients to achieve a simultaneous explanation:

breaking the universality of the flavour structure of NP some type of cancellation among different contributions

Vector-like leptons together with nontrivial NP seems to be a plausible option!

Anomalies in nuclear transitions of: $^8\mathrm{Be}$ and $^4\mathrm{He}$

- Create excited ⁸Be* from a p-beam on ⁷Li
- Nucleus de-excites emitting a γ
- Measure angular distribution of e^+e^- form internal pair creation

In 2016, the ATOMKI collaboration reported to have seen a " 6.8σ " excess in $^8\text{Be}^* \to ^8\text{Be} \gamma$ ($\to e^+e^-$) transition, compatible with a resonance Krasznahorkay et al PRL 2016 2019 reinvestigation @ " 5σ "

$${}^{8}\text{Be}^{*\prime}(j^{\pi}=1^{+},T=1^{*}) \to {}^{8}\text{Be}^{0}(j^{\pi}=0^{+},T=0), \ E=17.64 \text{ MeV}$$

$${}^{8}\text{Be}^{*}(j^{\pi}=1^{+},T=0^{*}) \to {}^{8}\text{Be}^{0}(j^{\pi}=0^{+},T=0), \ E=18.15 \text{ MeV}$$

Resonance observed in isospin conserving transition but absent in isospin violating one!

Best fit for the isospin conserving transition:

$$m_X = 17.01(16) \,\mathrm{MeV}$$

$$\Gamma_X/\Gamma_{\gamma} = 6(1) \times 10^{-6}$$

***Isospin mixing can affect these fit values

Anomaly in ⁸Be nuclear transition: suspects

$${}^{8}\text{Be}^{*'}(j^{\pi} = 1^{+}, T = 1^{*}) \to {}^{8}\text{Be}^{0}(j^{\pi} = 0^{+}, T = 0), E = 17.64 \text{ MeV}$$

$${}^{8}\text{Be}^{*}(j^{\pi} = 1^{+}, T = 0^{*}) \to {}^{8}\text{Be}^{0}(j^{\pi} = 0^{+}, T = 0), E = 18.15 \text{ MeV}$$

Possible candidates for X_{17} :

★ Light scalar resonance ⇒ would violate angular momentum conservation in 1+ → 0+ transition

tight pseudo-scalar: minimal models already excluded in the required coupling range can be partially circumvented in the presence of additional non-photonic couplings

Doebrich et al. JHEP 2016 Ellwanger et al. JHEP 2016

Light vector: severe constraints on couplings for the relevant mass range (more details on next slides)

Feng et al. PRL 2016; PRD 2017; 2020

Light axial vector: possible, requires ab-initio computation for the relevant form factors

Kozaczuk et al PRD 2017

Other exotic possibilities explored range from open string QED mesons to "4 bare quarks" interpretation

Couplings of the new vector boson for ${}^{8}\text{Be}$

A new Z' NC can be parametrised with effective couplings:

$$J_{Z'}^{\mu} = e\bar{\psi}_i \gamma^{\mu} (\varepsilon_{ij}^V + \gamma^5 \varepsilon_{ij}^A) \psi_j$$

in the simple case of purely vector quark current; the isospin conserving limit gives

$$\frac{\Gamma(^8\mathrm{Be}^* \to {}^8\mathrm{Be} + \mathbf{Z'})}{\Gamma(^8\mathrm{Be}^* \to {}^8\mathrm{Be} + \gamma)} \simeq (\varepsilon_p^V + \varepsilon_n^V)^2 \left[1 - \left(\frac{m_{Z'}}{18.15\,\mathrm{MeV}} \right)^2 \right]^{\frac{3}{2}}$$

$$arepsilon_p^V \simeq 2 \, arepsilon_{uu}^V + arepsilon_{dd}^V$$
 $arepsilon_n^V \simeq arepsilon_{uu}^V + 2 \, arepsilon_{dd}^V$

including isospin mixing effects à la Feng et.al.

leads to about 15% modification in allowed ranges

$$\frac{\Gamma(^{8}\text{Be}^{*} \to {}^{8}\text{Be} + \mathbf{Z}')}{\Gamma(^{8}\text{Be}^{*} \to {}^{8}\text{Be} + \gamma)} \simeq |0.05(\varepsilon_{p}^{V} + \varepsilon_{n}^{V}) + 0.95(\varepsilon_{p}^{V} - \varepsilon_{n}^{V})|^{2} \left[1 - \left(\frac{m_{Z'}}{18.15 \text{ MeV}}\right)^{2}\right]^{\frac{3}{2}}$$

$${}^{8}\text{Be}^{*'}(j^{\pi} = 1^{+}, T = 1^{*}) \to {}^{8}\text{Be}^{0}(j^{\pi} = 0^{+}, T = 0), E = 17.64 \text{ MeV}$$

$${}^{8}\text{Be}^{*}(j^{\pi} = 1^{+}, T = 0^{*}) \to {}^{8}\text{Be}^{0}(j^{\pi} = 0^{+}, T = 0), E = 18.15 \text{ MeV}$$

the null results for the mostly isotriplet excited state require a kinematic suppression in the presence of isospin mixing => a larger preferred mass for the Z' to achieve the required phase space suppression

for a mass 17.5 MeV the normalised branching fraction fit can be as low as

$$\Gamma_{Z'}/\Gamma_{\gamma} = 0.5 \times 10^{-6}$$

Conservative range consistent with data:

$$|\varepsilon_n^V + \varepsilon_p^V| \simeq (2 - 15) \times 10^{-3} \sqrt{\text{BR}(\mathbf{Z'} \to e^+e^-)}^{-1}$$

Couplings of the new vector boson for ⁸Be

$$J_{Z'}^{\mu} = e\bar{\psi}_i \gamma^{\mu} (\varepsilon_{ij}^V + \gamma^5 \varepsilon_{ij}^A) \psi_j$$

$$|\varepsilon_n^V + \varepsilon_p^V| \simeq (2-15) \times 10^{-3} \sqrt{\mathrm{BR}(\mathbf{Z}' \to e^+e^-)}^{-1}$$
 from normalised branching fraction fit

Z' should be sufficiently short lived for its decay to occur inside the Atomki spectrometer ~ $\mathcal{O}(cm)$

$$\Gamma(\mathbf{Z'} \to e^+ e^-) = (|\varepsilon_{ee}^V|^2 + |\varepsilon_{ee}^A|^2) \frac{\lambda^{\frac{1}{2}}(m_{Z'}, m_e, m_e)}{24\pi m_{Z'}}$$

$$|\varepsilon_{ee}^V| \gtrsim 1.3 \times 10^{-5} \sqrt{\mathrm{BR}(\mathbf{Z'} \to e^+e^-)}$$

Atomic parity violation in Caesium

$$|\varepsilon_{ee}^A| \lesssim 2.6 \times 10^{-9}$$

Can pure dark photon work as a solution?

NO, couplings due to kinetic mixing with photon: $\varepsilon_n^V = \varepsilon_\nu^V = 0$, $\varepsilon_p^V = -\varepsilon_{ee}^V$

NA48/2 bound for $\pi^0 o \gamma A'$ leads to $|arepsilon_p^V| \lesssim 1.2 imes 10^{-3}$ $\ref{eq:sum}$

After the experiments: which new physics model?

A "prototype" extension of the SM: $U(1)_{B-L}$

Field	$SU(3)_c$	$\mathrm{SU}(2)_L$	$\mathrm{U}(1)_Y$	$\mathrm{U}(1)_{B-L}$
$Q = (u_L, d_L)^T$	3	2	$\frac{1}{6}$	$\frac{1}{3}$
$\ell = (\nu_L,e_L)^T$	1	2	$-\frac{1}{2}$	-1
u_R	3	1	$\frac{2}{3}$	$\frac{1}{3}$
d_R	3	1	$-\frac{1}{3}$	$\frac{1}{3}$
e_R	1	1	-1	-1
$h_{ m SM}$	1	2	$\frac{1}{2}$	0
N_R	1	1	0	-1
$L_{L,R} = \left(L_{L,R}^0, L_{L,R}^-\right)^T$	1	2	$-\frac{1}{2}$	1
$E_{L,R}$	1	1	-1	1
h_X	1	1	0	2

New scalar singlet h_X : spontaneously breaks $U(1)_{B-L}$ below the EW scale giving a 17 MeV Z'

3 gen $\times N_R$: cancel the triangular gauge anomalies

3 gen \times (isodoublet + isosinglet) vector-like lepton: provides non-universality to new charged lepton NC also plays an essential role in cancelling the NC interaction of neutrinos to Z'

A "prototype" extension of the SM: $U(1)_{B-L}$

Natural type-I seesaw mass

$$\mathcal{L}_{\mathsf{Yuk.}} \supseteq -y_\ell^{ij} h_{\mathsf{SM}} \bar{\ell}_L^i e_R^j + y_\nu^{ij} \tilde{h}_{\mathsf{SM}} \bar{\ell}_L^i \textit{\textbf{N}}_{\textit{\textbf{R}}}^j - \frac{1}{2} y_M^{ij} \textit{\textbf{h}}_{\textit{\textbf{X}}} \bar{\textit{\textbf{N}}}_{\textit{\textbf{R}}}^{ic} \textit{\textbf{N}}_{\textit{\textbf{R}}}^j$$

 $U(1)_{B-L}$ is kinetically mixed with the $U(1)_Y$

$$\mathcal{L}_{\mathrm{kin}}^{\mathrm{gauge}} \supseteq -\frac{1}{4} \tilde{F}_{\mu\nu} \tilde{F}^{\mu\nu} - \frac{1}{4} \tilde{F}'_{\mu\nu} \tilde{F}'^{\mu\nu} + \frac{\epsilon_k}{2} \tilde{F}_{\mu\nu} \tilde{F}'^{\mu\nu}$$

Field	$SU(3)_c$	$\mathrm{SU}(2)_L$	$\mathrm{U}(1)_Y$	$\mathrm{U}(1)_{B-L}$
$Q=(u_L,d_L)^T$	3	2	$\frac{1}{6}$	$\frac{1}{3}$
$\ell = (\nu_L,e_L)^T$	1	2	$-\frac{1}{2}$	-1
u_R	3	1	$\frac{2}{3}$	$\frac{1}{3}$
d_R	3	1	$-\frac{1}{3}$	$\frac{1}{3}$
e_R	1	1	-1	-1
$h_{ m SM}$	1	2	$\frac{1}{2}$	0
N_R	1	1	0	-1
$L_{L,R} = \left(L_{L,R}^0, L_{L,R}^-\right)^T$	1	2	$-\frac{1}{2}$	1
$E_{L,R}$	1	1	-1	1
h_X	1	1	0	2

=> mass mixing between $U(1)_{B-L}$ boson and W^3 with $\tan 2\theta' \simeq -2\frac{\epsilon_k}{\sqrt{1-\epsilon_k^2}}\sin \theta_w$

Diagonalising kinetic and mass mixing gives physical (gauge) couplings (at leading order):

$$D_{\mu} \simeq \partial_{\mu} + \ldots + i \frac{g}{\cos \theta_{w}} (T_{3f} - \sin^{2} \theta_{w} Q_{f}) Z_{\mu} + i e Q_{f} A_{\mu} + i e (\varepsilon Q_{f} + \varepsilon_{B-L} Q_{f}^{B-L}) Z_{\mu}'$$

with
$$\varepsilon=rac{\epsilon_k\cos\theta_w}{\sqrt{1-\epsilon_k^2}}$$
 and $\varepsilon_{B-L}=rac{g_{B-L}}{e\sqrt{1-\epsilon_k^2}}$

Nucleon couplings and mass: $\ arepsilon_p^V = arepsilon_{B-L} - arepsilon \,, \ \ arepsilon_n^V = arepsilon_{B-L} \,, \ \ m_{Z'}^2 \simeq 4 arepsilon_{B-L}^2 v_X^2$

But also: $\varepsilon_{\nu\nu}^A = -\varepsilon_n^V$ neutrino coupling too large XXX more in a few slides

$^8\!Be$ data and coupling to nucleons

CH, Kriewald, Orloff, Teixeira JHEP 2020

8Be data and coupling to leptons

Direct searches: negative results @ electron beam dump NA64

negligible production

$$\varepsilon_{ee}^{V2} + \varepsilon_{ee}^{A2} < 1.1 \times 10^{-16}$$

or

decay inside the beam dump

$$\sqrt{|\varepsilon_{ee}^V|^2 + |\varepsilon_{ee}^A|^2} \gtrsim \frac{6.8 \times 10^{-4}}{\sqrt{\text{BR}(Z' \to e^+e^-)}}$$

Tight constraints from neutrino-electron scattering:

For LFU couplings and Dirac ν :

$$\sqrt{|\varepsilon_{ee}^V \varepsilon_{\nu_\ell \nu_\ell}^V|} < 7 \times 10^{-5}$$

Feng et al. PRD 2017

For Majorana ν the vector current is vanishing requires new fit !

CHARM-II =>
$$\nu_{\mu}$$
 - e scattering

TEXONO =>
$$\nu_e - e$$
 scattering

$$\begin{aligned} |\varepsilon_{\nu_e\nu_e}^A| &\lesssim 1.2 \times 10^{-5} \& \\ |\varepsilon_{\nu_\mu\nu_\mu}^A| &\lesssim 12.2 \times 10^{-5} \end{aligned}$$

$$\varepsilon_{\nu\nu}^A = -\varepsilon_n^V$$

CH, Kriewald, Orloff, Teixeira JHEP 2020

But, we have seen that with SM fermion content

Isodoublet vector-like leptons

Solution: Add 3 gens. of vector-like lepton doublets

Mass mixing of L^0 with u_L can arrange cancellations to give an acceptably small $\epsilon^A_{
u
u}$

$$\mathcal{L}_{\mathsf{Yuk.}} \supseteq -y^{ij}_\ell h_{\mathsf{SM}} ar{\ell}^i_L e^j_R + y^{ij}_
u ar{h}_{\mathsf{SM}} ar{\ell}^i_L oldsymbol{N^j_R} - rac{1}{2} y^{ij}_M oldsymbol{h_X} ar{N^i_R} oldsymbol{N^j_R} - oldsymbol{\lambda^{ij}_L} oldsymbol{h_X} ar{\ell}^i_L oldsymbol{L^j_R} - oldsymbol{M^{ij}_L} ar{L^j_R} - oldsymbol{M^{ij}_L} ar{L^i_L} oldsymbol{L^j_R}$$

- \circ λ_L^{ij} needs to be (almost) diagonal to comply with LFV bounds: $\lambda_L^{ij} o \lambda_L \alpha$
- o M_L^{ij} can be chosen to be diagonal; collider bounds: mass scale $\sim 100 \, {\rm GeV}$
 - \Rightarrow Z'- $\nu\nu$ -couplings get modified: $\varepsilon_{\nu_{\alpha}\nu_{\alpha}} \simeq \varepsilon_{B-L} \left(1 \frac{\lambda_{L\alpha}^2 v_X^2}{M_{L\alpha}^2}\right)$ $\Rightarrow \lambda_{L\alpha}^2 v_X^2 \simeq M_{L\alpha}^2$ is fixed for each lepton generation α !

But now the charged component of L mixes with left-handed SM charged leptons, but the right handed couplings remain unmodified

$$g_{Z',L}^{\ell_{\alpha}\ell_{\alpha}} \simeq -\varepsilon + \left(\frac{\lambda_{L\alpha}^2 v_X^2}{M_{L\alpha}^2} - 1\right) \varepsilon_{B-L}$$

$$\varepsilon_n^V = \varepsilon_{B-L}$$

in conflict with

Isosinglet vector-like leptons

Solution: Add 3 gens. of vector-like lepton isosinglets

$$\mathcal{L}_{\mathsf{Yuk.}} \supseteq -y_{\ell}^{ij}h_{\mathsf{SM}}\bar{\ell}_{L}^{i}e_{R}^{j} + y_{\nu}^{ij}\tilde{h}_{\mathsf{SM}}\bar{\ell}_{L}^{i}N_{R}^{j} - \frac{1}{2}y_{M}^{ij}h_{X}\bar{N}_{R}^{ic}N_{R}^{j} - \lambda_{L}^{ij}h_{X}\bar{\ell}_{L}^{i}L^{j}{}_{R} - M_{L}^{ij}\bar{L}_{L}^{i}L^{j}{}_{R}$$

$$-\lambda_{E}^{ij}h_{X}\bar{E}^{i}{}_{L}e_{R}^{j} - M_{E}^{ij}\bar{E}^{i}{}_{L}E^{j}{}_{R} - h^{ij}h_{\mathsf{SM}}\bar{L}^{i}{}_{L}E^{j}{}_{R} + k^{ij}\tilde{h}_{\mathsf{SM}}\bar{E}^{i}{}_{L}L^{j}{}_{R}$$

$$\Rightarrow \varepsilon_{\ell_{\alpha}\ell_{\alpha}}^{A} \simeq \frac{1}{2} \left(\frac{\lambda_{E\alpha}^{2} v_{X}^{2}}{M_{E\alpha}^{2}} - \frac{\lambda_{L\alpha}^{2} v_{X}^{2}}{M_{L\alpha}^{2}} \right) \varepsilon_{B-L} \Rightarrow \lambda_{E\alpha}$$
 is fixed for the 1. gen!

$$\Rightarrow \varepsilon_{\ell_{\alpha}\ell_{\alpha}}^{V} \simeq -\varepsilon + \frac{1}{2} \left(\frac{\lambda_{L\alpha}^{2} v_{X}^{2}}{M_{L\alpha}^{2}} + \frac{\lambda_{E\alpha}^{2} v_{X}^{2}}{M_{E\alpha}^{2}} - 2 \right) \varepsilon_{B-L} \Rightarrow \text{fixes } \varepsilon \simeq -(8-20) \times 10^{-4}$$

 \Rightarrow 2 new Yuk. matrices h^{ij} and k^{ij} (assumed to be diagonal): if different, their asymmetry will generate axial and pseudo-scalar couplings in $Z'-\ell L$ and $h_X-\ell L$ interactions

- Dominant contributions by Z' and h_X
- Mass-insertion $\propto h_{\alpha}$ and $\propto k_{\alpha}$

 Loop-functions for scalar/pseudo-scalar and vector/axial couplings have opposite sign

Explaining $(g-2)_{\mu}$ and $(g-2)_{e}$ simultaneously

CH, Kriewald, Orloff, Teixeira JHEP 2020

o
$$M_E = M_L \simeq 90 \, \mathrm{GeV}$$
, $\lambda_L = \lambda_E = M_L/v_X (\simeq 6.4)$, $m_{h_X} \simeq 70 \, \mathrm{GeV}$, $\varepsilon_{B-L} = 2 \times 10^{-3}$, $\varepsilon = -8 \times 10^{-4}$, $k_e = k_\mu = 10^{-7}$

Dashed lines: change of sign when pseudo-scalar contribution larger than scalar and/or axial larger than vector

Parameter space and predictability of the model

To explain 8Be :

$$\begin{aligned} 2\times 10^{-3} &\lesssim |\varepsilon_n^V| \lesssim 15\times 10^{-3}\,,\\ |\varepsilon_p^V| &\lesssim 1.2\times 10^{-3}\,,\\ 0.68\times 10^{-3} &\lesssim |\varepsilon_{ee}^V| \lesssim 2\times 10^{-3}\,,\\ |\varepsilon_{ee}^A| &\lesssim 2.6\times 10^{-9}\,,\\ |\varepsilon_{\nu_e\nu_e}^A| &\lesssim 7.8\times 10^{-6}\,,\\ |\varepsilon_{\nu_\mu\nu_\mu}^A| &\lesssim 8.4\times 10^{-5}\,. \end{aligned}$$

$$v_X \lesssim 14 \text{ GeV}$$
 $m_{Z'} \approx m_{B'} = 2 e |\varepsilon_{B-L}| v_X$

$$\varepsilon_{B-L} = 0.002$$

$$|\varepsilon_n^V| = |\varepsilon_{B-L}|$$

$$-0.002 \lesssim \varepsilon \lesssim -0.0008$$

$$|\varepsilon_p^V| = |\varepsilon + \varepsilon_{B-L}|$$

$$\left|1 - \frac{\lambda_L^2 v_X^2}{M_I^2}\right| \lesssim 0.01$$

$$\left| 1 - \frac{\lambda_L^2 v_X^2}{M_L^2} \right| \lesssim 0.01 \qquad \left| \frac{\lambda_E^2 v_X^2}{M_E^2} - \frac{\lambda_L^2 v_X^2}{M_L^2} \right| \lesssim 2.6 \times 10^{-6}$$

CH, Kriewald, Orloff, Teixeira JHEP 2020

• Black line: $(g-2)_e$ explained \checkmark coloured region: $(g-2)_{\mu}$ explained \checkmark

Concluding remarks

Currently many "tensions" with SM hosted in lepton-related observables

We have discussed three of such tensions in detail in the context of a simple prototype $U(1)_{B-L}$ extension

Light vector candidates to explain ⁸Be is an exciting new physics possibility

Potential to address the lepton anomalous magnetic moments in simple NP extensions

Constrained parameter space: experimental bounds, 8 Be & Δa_μ \Rightarrow "predict" Δa_e

Exciting near-future @ "experimental" front!

FNAL update on $(g-2)_{\mu}$ expected soon!

NA64 is getting ready to hunt down the X17 boson at the CERN SPS 2009.02756

Thank you for your attention!

Backup-I

$$\begin{pmatrix} A^{\mu} \\ Z^{\mu} \\ Z^{\prime \mu} \end{pmatrix} = \begin{pmatrix} \cos \theta_w & \sin \theta_w & 0 \\ -\sin \theta_w \cos \theta' & \cos \theta_w \cos \theta' & \sin \theta' \\ \sin \theta_w \sin \theta' & -\cos \theta_w \sin \theta' & \cos \theta' \end{pmatrix} \begin{pmatrix} B^{\mu} \\ W_3^{\mu} \\ B^{\prime \mu} \end{pmatrix}$$

$$\tan 2\theta' = \frac{2 \varepsilon' g' \sqrt{g^2 + g'^2}}{\varepsilon'^2 g'^2 + 4 m_{B'}^2 / v^2 - g^2 - g'^2}$$

$$M_A = 0, \qquad M_{Z, Z'} = \frac{g}{\cos \theta_w} \frac{v}{2} \left[\frac{1}{2} \left(\frac{\varepsilon'^2 + 4 m_{B'}^2 / v^2}{g^2 + g'^2} + 1 \right) \mp \frac{g' \cos \theta_w \varepsilon'}{g \sin 2\theta'} \right]^{\frac{1}{2}}$$

Backup-II

$$\mathcal{L}_{\text{mass}}^{\ell} = \begin{pmatrix} \bar{e}_L \ \bar{L}_L^- \ \bar{E}_L \end{pmatrix} \cdot M_{\ell} \cdot \begin{pmatrix} e_R \\ L_R^- \\ E_R \end{pmatrix} = \begin{pmatrix} \bar{e}_L \ \bar{L}_L^- \ \bar{E}_L \end{pmatrix} \begin{pmatrix} y \frac{v}{\sqrt{2}} & \lambda_L \frac{v_X}{\sqrt{2}} & 0 \\ 0 & M_L & h \frac{v}{\sqrt{2}} \\ \lambda_E \frac{v_X}{\sqrt{2}} & k \frac{v}{\sqrt{2}} & M_E \end{pmatrix} \begin{pmatrix} e_R \\ L_R^- \\ E_R \end{pmatrix}$$

$$M_\ell^{
m diag} = U_L^\dagger \, M_\ell \, U_R$$

$$U_L = \begin{pmatrix} 1 - \frac{\lambda_L^2 v_X^2}{4M_L^2} & \frac{\lambda_L v_X}{\sqrt{2}M_L} - \frac{\lambda_L^3 v_X^3}{4\sqrt{2}M_L^3} & \frac{(k\lambda_L M_E + h\lambda_L M_L + \lambda_E M_E y)vv_X}{2M_E^3} \\ \frac{\lambda_L^3 v_X^3}{4\sqrt{2}M_L^3} - \frac{\lambda_L v_X}{\sqrt{2}M_L} & 1 - \frac{\lambda_L^2 v_X^2}{4M_L^2} & \frac{(kM_E M_L + h(M_E^2 + M_L^2))v}{\sqrt{2}M_E^3} \\ \frac{(h\lambda_L M_E - \lambda_E M_L y)vv_X}{4M_E^3} - \frac{(kM_E M_L + h(M_E^2 + M_L^2))v}{\sqrt{2}M_E^3} & 1 \end{pmatrix}$$

$$U_R = \begin{pmatrix} 1 - \frac{\lambda_E^2 v_X^2}{4M_E^2} & \frac{\lambda_L v v_X}{2M_L^2} - \frac{\lambda_E (k M_E M_L + h(M_E^2 + M_L^2)) v v_X}{2M_E^3 M_L} & \frac{\lambda_E v_X}{\sqrt{2} M_E} - \frac{\lambda_E^3 v_X^3}{4\sqrt{2} M_E^3} \\ \frac{(h \lambda_E M_L - \lambda_L M_E y) v v_X}{2M_E M_L^2} & 1 & \frac{(h M_E M_L + k (M_E^2 + M_L^2)) v}{\sqrt{2} M_E^3} \\ \frac{\lambda_E^3 v_X^3}{4\sqrt{2} M_E^3} - \frac{\lambda_E v_X}{\sqrt{2} M_E} & - \frac{(h M_E M_L + k (M_E^2 + M_L^2)) v}{\sqrt{2} M_E^3} & 1 - \frac{\lambda_E^2 v_X^2}{4M_E^2} \end{pmatrix}$$

Backup-III

$$\begin{split} \mathcal{L}_{\text{mass}}^{\nu} &= \left(\nu^{T} \ N^{c\,T} \ L^{0\,T} \ L^{0\,c\,T} \right)_{L} C^{-1} \cdot M_{\nu} \cdot \begin{pmatrix} \nu \\ N^{c} \\ L^{0} \\ L^{0\,c} \end{pmatrix}_{L} \\ &= \left(\nu^{T} \ N^{c\,T} \ L^{0\,T} \ L^{0\,c\,T} \right)_{L} C^{-1} \begin{pmatrix} 0 & y_{\nu} \frac{v}{\sqrt{2}} & 0 & \lambda_{L} \frac{v_{X}}{\sqrt{2}} \\ y_{\nu} \frac{v}{\sqrt{2}} & y_{M} \frac{v_{X}}{\sqrt{2}} & 0 & 0 \\ 0 & 0 & 0 & M_{L} \\ \lambda_{L} \frac{v_{X}}{\sqrt{2}} & 0 & M_{L} & 0 \end{pmatrix} \begin{pmatrix} \nu \\ N^{c} \\ L^{0} \\ L^{0c} \end{pmatrix}_{L} \end{split}$$

$$M_{
u}^{\mathrm{diag}} = \tilde{U}_{
u}^T M_{
u} \tilde{U}_{
u}$$

$$\tilde{U}_{\nu} = \begin{pmatrix} 1 - \frac{\lambda_{L}^{2} v_{X}^{2}}{4M_{L}^{2}} - \frac{v^{2} y_{\nu}^{2}}{2v_{X}^{2} y_{M}^{2}} & \frac{v y_{\nu}}{v_{X} y_{M}} & \frac{\lambda_{L} v_{X}}{2M_{L}} & \frac{\lambda_{L} v_{X}}{2M_{L}} \\ - \frac{v y_{\nu}}{v_{X} y_{M}} & 1 - \frac{v^{2} y_{\nu}^{2}}{2v_{X}^{2} y_{M}^{2}} & 0 & 0 \\ - \frac{\lambda_{L} v_{X}}{\sqrt{2} M_{L}} & - \frac{\lambda_{L} v y_{\nu}}{\sqrt{2} M_{L} y_{M}} & \frac{1}{\sqrt{2}} - \frac{\lambda_{L}^{2} v_{X}^{2}}{4\sqrt{2} M_{L}^{2}} & \frac{1}{\sqrt{2}} - \frac{\lambda_{L}^{2} v_{X}^{2}}{4\sqrt{2} M_{L}^{2}} \\ 0 & 0 & - \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

Backup-IV

Recast searches for slepton/neutralino pair production: ${m h}_{m X} o { ilde \chi}^0 \,, \quad {m E}, {m L} o { ilde l}$