Search for lepton-flavor, lepton- and baryon-number violating tau decays at Belle

Debashis Sahoo

(on behalf of Belle collaboration)

TIFR, Mumbai and Utkal University, Bhubaneswar, India

ANOMALIES 2020

September 12, 2020

Outline

Lepton-flavor, lepton- and baryon-number violating tau decays

- Search for $\tau \to p\ell\ell'$ ($\ell^{(\prime)} = \mu$, e) decays [NEW] Belle preliminary
- KEKB and Belle detector
- Introduction
- Selection criteria
- Sideband study
- Expected background
- Results in data
- Summary

KEKB and Belle detector

- KEKB: Mostly e⁺ (3.5 GeV) and e⁻ (8 GeV) mostly collide at center-of-mass energy 10.58 GeV.
- $\sigma(bb) \sim 1.1 \mathrm{nb}$ and $\sigma(\tau\tau) \sim 0.9 \mathrm{nb}$: So a *B* factory as well as τ factory.

Belle Detector Aerogel Cherenkov cnt. SC solenoid $n=1.015\sim1.030$ CsI(Tl) $16X_{o}$ **TOF** counter 8 GeV Central Drift Chamber small cell +He/C2H4 Si vtx. det. μ / K_i detection 3/4 lyr. DSSD 14/15 Îvr. RPC+Fe

ullet Collected close to $1 {
m ab}^{-1}$ data at different resonances and off-resonances.

Introduction

- Sakharov formulated three conditions to explain matter-antimatter asymmetry in the universe [JETP Lett. 5, 24-27, 1967]
 Baryon number violation 2. C-symmetry and CP-symmetry violation 3. Interaction out of thermal equilibrium
- Searching for six decay channels $\tau^- \to p \mu^- \mu^-$, $\bar{p} \mu^+ \mu^-$, $p e^- e^-$, $\bar{p} e^+ e^-$, $\bar{p} e^+ \mu^-$ and $\bar{p} e^- \mu^+$ using the data recorded by Belle
- Any observation of lepton flavor, lepton and baryon number violation would be a clear sign for new physics
- A diagram for $\tau^- \to \bar{p}\mu^+\mu^-$ possible in a new physics scenario proposed by Fuentes-Martin et al. [JHEP 1501,134 (2015)], shown in right

• LHCb set $\mathcal{B}(\tau^- \to p \mu^- \mu^-) < 4.4 \times 10^{-7}$ and $\mathcal{B}(\tau^- \to \overline{p} \mu^+ \mu^-) < 3.3 \times 10^{-7}$ at 90% confidence level using 1 fb $^{-1}$ pp collision data [Phys. Lett. B 724 (2013)]

Debashis Sahoo LFV, LNV and BNV 4/

Data and reconstruction

• $711\,\mathrm{fb^{-1}}$ (89.4 $\mathrm{fb^{-1}}$) data recorded at (60 MeV below) the $\Upsilon(4S)$ resonance and a sample of $121\,\mathrm{fb^{-1}}$ collected near the $\Upsilon(5S)$ peak are used in the analysis.

We reconstruct $\tau \to p\ell\ell'$ $(\ell^{(')} = \mu, e)$

- Variables to identify signal: $M_{\text{rec}} = \sqrt{E_{\rho\ell\ell'}^2 - \vec{p}_{\rho\ell\ell'}^2},$ $\Delta E = E_{\rho\ell\ell'}^{\text{CM}} - E_{\text{beam}}^{\text{CM}}$
- Red box denotes the signal region.
- The sideband is the ΔE-M_{rec} region outside the red box; we use it to check the overall data - MC agreement for different variables.
- The ΔE strip, indicated by the region between two green lines excluding the red box is used to calculate the expected background yield in the signal region.

 $\Delta \emph{E-M}_{\rm rec}$ distribution for $\tau^- \to \bar p e^- e^+$ in signal MC

Preliminary selections

- Select events with $17^{\circ} < \theta < 150^{\circ}$, where θ is the polar angle relative to the z axis.
- Impact parameters: |dr| < 0.5 cm and |dz| < 3 cm
- Transverse momentum $p_{\rm T}>0.1$ GeV and energy of $\gamma,~E_{\gamma}>0.1$ GeV
- Sum of charge : $|q_{sum}| = 0$
- Maximum p_T of charged track, $p_T^{\rm max} > 0.5 \; {\rm GeV}$
- $E_{\rm rec} > 3$ GeV or $\rho_T^{\rm max} > 1$ GeV where $E_{\rm rec} = {\sf sum}$ of momentum of all charged tracks and energy of all photons in CM frame.
- For two-track events: $E_{\rm ECL} < 11$ GeV & $5^{\circ} < \theta_{\rm miss} < 175^{\circ}$
- For 2-4 track events: $E_{\rm tot} < 9$ GeV or $\theta^{\rm max} < 175$ degree or $2 < E_{\rm ECL} < 10$ GeV where $E_{\rm tot} = E_{\rm rec} + p_{\rm miss}^{\rm CM}$, $E_{\rm ECL}$ is the sum of energy deposited in the ECL

 $|\mathit{dr}| < 0.5$ cm and $|\mathit{dz}| < 3.0$ cm

$$p_T^{
m max} > 0.5 \; {
m GeV}$$

Additional selections

- 3-1 event topolgy is used to select the $\tau \tau$ events.
- Protons are identified with P(p/K) > 0.6 and $P(p/\pi) > 0.6$.
- We apply eID > 0.9 and μ ID > 0.9 to select the electron and muon candidates.
- elD(p) < 0.9 to suppress electron misidentification.
- In addition, thrust>0.9, $\cos\theta_{\rm tag-miss}^{\rm CM}>0$ and $5<\theta_{\rm miss}<175$ degree are applied for all the channels.
- For $\tau^- \to \overline{p} e^- e^+$, $\tau^- \to p e^- e^-$, $\tau^- \to \overline{p} e^+ \mu^-$ and $\tau^- \to p \mu^- \mu^-$ channels, gamma conversion veto >0.2 GeV (on oppositely-charged track pairs assuming electron mass hypothesis) applied.
- In addition $E_{\rm ECL} < 10$ GeV applied for $\tau^- \to \overline{p} e^- e^+$, $\tau^- \to p e^- e^-$ channels to reject the remaining two-photon and radiative Bhabha backgrounds.

Sideband study

• Sideband shape is shown in the case of $au^- o \overline{p} e^+ e^-$ channel without conversion veto. Belle preliminary

Expected background in signal region

Division of region to predict the expected background

- ullet We estimate the expected number of backgrounds in the signal region from the sideband assuming background events are distributed uniformly in regions 4 and 6 (ΔE strip).
- $\hbox{$\bullet$ Background event density} = \frac{\textit{$N_{\rm strip}$}}{\rm Area}$ where $\textit{$N_{\rm strip}$}$ is the number of events observed in regions 4 and 6.
- The event density is then multiplied by the area of signal blind (region 5) to determine the number of events expected in the signal region.
- The method is first verified in MC then applied to data.
- The uniformity in region 4 and 6 is checked without applying proton ID.

Results

• Number of observed events are consistent with the background prediction.

Belle preliminary

Limits

- Upper limit (UL) on the signal yield is set using the Feldman-Cousins [G. J. Feldman and R. D. Cousins, Phys. Rev. D 57, 3873 (1998)] method.
- For $\tau^- \to p\mu^-\mu^-$: No event in the signal region Expected background in the signal region = 1.30 ± 0.46 UL on the signal yield = 2.6 at 90%CL.
- Upper limit on

$$\begin{split} \mathcal{B}(\tau^- \to \overline{p} e^- \mu^+) &< \frac{N_{\rm sig}^{\rm UL}}{2N_{\tau\tau}\epsilon} \;, \\ N_{\tau\tau} &= 841 \times 10^6 \; \tau\tau \; {\rm pairs} \;, \; \epsilon = 4.6\%, \\ {\rm signal \; efficiency} \end{split}$$

$$<3.4\times10^{-8}$$
 at 90% CL.

Scan result for upperlimit,

$$au^-
ightarrow \overline{p} \mathrm{e}^- \mu^+$$

All channels	ϵ (%)	$N_{ m BG}$	$N_{ m obs}$	$N_{ m sig}^{ m UL}$	$\mathcal{B}\left(imes10^{-8} ight)$
$ au^- ightarrow \overline{p} e^+ e^-$	7.8	0.50 ± 0.35	1	3.2	< 2.4
$ au^- o extit{pe}^- extit{e}^-$	8.0	$\boldsymbol{0.23 \pm 0.07}$	1	3.6	< 2.7
$ au^- ightarrow \overline{\it p} {\it e}^+ \mu^-$	6.5	0.22 ± 0.06	0	1.8	< 1.6
$ au^- ightarrow \overline{\it p} e^- \mu^+$	6.9	$\textbf{0.40} \pm \textbf{0.28}$	0	2.0	< 1.7
$ au^- ightarrow p \mu^- \mu^-$	4.6	1.30 ± 0.46	1	2.6	< 3.4
$ au^- ightarrow \overline{p} \mu^- \mu^+$	5.0	1.14 ± 0.43	0	1.5	< 1.8

Summary

- LHCb set $\mathcal{B}(\tau^- \to p \mu^- \mu^-) < 4.4 \times 10^{-7}$ and $\mathcal{B}(\tau^- \to \overline{p} \mu^+ \mu^-) < 3.3 \times 10^{-7}$ at 90% CL using 1 $\rm fb^{-1}$ pp collision data.
- Our limit for $\mathcal{B}(\tau^-\to p\mu^-\mu^-)<3.4\times 10^{-8}$ and $\mathcal{B}(\tau^-\to \overline{p}\mu^-\mu^+)<1.8\times 10^{-8}$ improve by an order of magnitude using $841\times 10^6~\tau^+\tau^-$ events.
- Also set the world's first limit on other four channels.
- More improved results are expected from Belle II.

THANK YOU