Current and future aspects of heavy fermion searches

Over the decades experiments have found each and every missing pieces

> Verified the facts that they belong to this family

Finally at the Large Hadron collider Higgs has been observed

Its properties must be verified

Strongly established with interesting shortcomings Few of the very interesting anomalies:

> Tiny neutrino mass and flavor mixings Relic abundance of dark matter...

SM can not explain them

In a nutshell motivation of BSM physics is very strong

The Standard Model is not a complete one

Higgs vacuum stability

Stable/ metastable/ unstable : needs to be fixed

The long – standing question of the origin of the neutrino mass and flavor mixing are yet – to – be fixed

nature of the neutrino mass

Non – Standard Interaction : Farzan

Magnetic moment : Jana

Models and symmetries: Srivastava

discovery potential of the beyond the SM candidate

Chun, Dutta Roshan, Mahapatra Patra, Show Singh

can not explain the exsitance of the Dark Matter relic abandance and the nature of the Dark Matter, Cosmological inflation Matter antimatter Asymmetry

Non – collider

Collider

pp, ee

ep: Padhan

Invisible decay of the Higgs boson

Prompt/ Long lived particle

Several other beyond the Standard Model scenarios e.g. Flavor physics

Results in the neutrino Sector

Goswami

Super- Kamiokande, Sudbury Neutrino Observatory 1999, Neutrino oscillation between mass and flavor eigenstates

- Nature of the neutrino mass: Majorana/ Dirac
- Ordering: Normal/Inverted
- Nature of the mixing between:
 Flavor and mass eigenstate

Models of Neutrino mass

Mitra

There is a wide variety of neutrino mass models

The predicted models extend the SM minimally

At the tree level SM can be extended by Singlet fermions

Minkowski, Ramond, Slansky, Yanagida, Gell – Mann, Glashow, Mohapatra, Senjanovic

Linear, Hybrid

Alternative ideas extending the Standard Model

SU(2) triplet scalar: type – II seesaw

Schecter, Valle, Lazarides, Shafi, Wetterich, Mohapatra, Senjanovic

SU(2) triplet fermion: type – III seesaw Foot, Lew, He, Joshi, Ma

One – loop and even at 2/3 – loop models also exist

Babu, Leung, Hirsch, King, Nasri, Volkas Dev, Pilaftsis AD, Nomura, Okada, Roy AD, Enomoto, Kanemura, Yagyu

Pati, Salam; Mohapatra, Pati; Senjanovic, Mohapatra Buchmuller, Greub; FileviezPerez, Han, Li; Deppisch. Desai, Valle; Kang, Ko, Li; Heeck, Teresi; Gluza, Chakrabortty Keung, Senjanovic; Ferrari et . al .; Nemevsek, Nesti, Senjanovic, Zhang; Chen, Dev, Mohapatra; Dev, Mohapatra, Zhang; Dev, Goswami, Mitra AD, Dev, Mohapatra; AD, Okada, Papapietro AD, Goswami, Nomura, Vishnudath; Bandyopadhyay, Bhattacharyya, Das, Raychaudhuri; Bandyopadhyay, Raychaudhuri

Particle content

Dobrescu, Fox; Cox, Han, Yanagida; AD, Okada, Raut; AD, Dev, Okada:

Chiang, Cottin, AD, Mandal; AD, Takahashi, Oda, Okada

	$SU(3)_c$	$\mathrm{SU}(2)_L$	$\mathrm{U}(1)_Y$	province	7	$U(1)_X$
$\overline{q_L^i}$	3	2	+1/6	x_q	=	$\frac{1}{6}x_H + \frac{1}{3}x_{\Phi}$
u_R^i	3	1	+2/3	x_u	=	$\frac{2}{3}x_H + \frac{1}{3}x_{\Phi}$
d_R^i	3	1	-1/3	x_d	=	$-\frac{1}{3}x_H + \frac{1}{3}x_\Phi$
$\overline{\ell_L^i}$	1	2	-1/2	x_{ℓ}	=	$-\frac{1}{2}x_H - x_{\Phi}$
e_R^i	1	1	-1	x_e	=	$-x_H - x_{\Phi}$
\overline{H}	1	2	+1/2	x'_H	=	$\frac{1}{2}x_H$
$oxed{N_R^i}$	1	1	0	$x_{ u}$	=	$-x_{\Phi}$
Φ	1	1	0	x'_{Φ}	=	$2x_{\Phi}$

$$m_{Z'} = 2 g_X v_{\Phi}$$

 $m_{Z'} = 2 g_X v_{\Phi}$ x_H, x_{Φ} will appear the coupling with Z'

3 generations of SM singlet right handed neutrinos (anomaly free)

Charges before the anomaly cancellations

 $U(1)_X$ breaking

$$\mathcal{L}_{Y}\supset -\sum_{i,j=1}^{3}Y_{D}^{ij}\overline{\ell_{L}^{i}}HN_{R}^{j}-rac{1}{2}\sum_{i=k}^{3}Y_{N}^{k}\Phi\overline{N_{R}^{k}}{}^{c}N_{R}^{k}+ ext{h.c.}, \ m_{D}^{ij}=rac{Y_{D}^{ij}}{\sqrt{2}}v_{h} \qquad m_{
u}=egin{pmatrix} 0&M_{D}&M_{D}&m_{
u}\simeq -M_{D}M_{N}^{-1}M_{D}^{T}&m_{
u}&m_{
u}=rac{Y_{D}^{i}}{\sqrt{2}}v_{\Phi}&m_{
u}=rac{Y_{D}^{i}}{\sqrt{2}}m_{
u}&m_{
u}=m_{
u$$

$$m_{N^i} = rac{Y_N^i}{\sqrt{2}} v_\Phi$$

$$m_{
u} = \begin{pmatrix} 0 & M_D \\ M_D^T & M_N \end{pmatrix}$$

$$m_{\nu} \simeq -M_D M_N^{-1} M_D^T$$

Charges after

Imposing the

anomaly

cancellations

Seesaw mechnism

Direct interaction of the Right Handed Neutrinos through light – heavy mixing

Flavor eigenstate can be expressed in terms of the mass eigenstate

Properties of the model and phenomenology

New particles

Z' boson

Heavy Majorana Neutrino

 $U(1)_X$ Higgs boson

Phenomenology

Z' boson production and decay

Z' boson mediated processes

Heavy neutrino production

 $U(1)_X$ Higgs phenoemenology : Vacuum Stability Dark Matter collider

Dev, Pilaftsis; Iso, Okada, Orikasa Orikasa, Okada, Yamada; Dev, Mohapatra, Zhang Leptogenesis and many more

Heavy neutrino interactions

Future landscape@ Energy Frontier

Experimental limits

$$\ell^{\pm}\ell^{\pm}$$
 + jets

CMS

1806.10905 13 TeV, 35.9 fb⁻¹

$2\ell + p_T^{\text{miss}}$: bounds from the Higgs decay $(h \to N\nu, N \to 2\ell\nu)$

13

Decay length of RHNs neutrinos as a function of lightest active neutrino mass

2ℓ + Fat jet

Das, Konar, Thalapillil

Production of the heavy neutrinos at the Linear Collider using fat jet

- Transverse momentum for fat-jet $p_T^J > 150 \text{ GeV}$ for M_N mass range 400 GeV-600 GeV and $p_T^J > 250 \text{ GeV}$ for M_N mass range 700 GeV-900 GeV.
- Transverse momentum for leading lepton $p_T^{e^{\pm}} > 100 \text{ GeV}$ for M_N mass range 400 GeV-600 GeV and $p_T^{e^{\pm}} > 200$ GeV for M_N mass range 700 GeV-900 GeV.
- Polar angle of lepton and fat-jet $|\cos \theta_e| < 0.85$, $|\cos \theta_J| < 0.85$.

1 TeV e⁻e⁺ collider

• Fat-jet mass $M_J > 70$ GeV.

• Fat-jet mass $M_J > 70$ GeV.

- ullet Transverse momentum for fat-jet $p_T^J > 250~{
 m GeV}$ for the M_N mass range 700 GeV-900 GeV and $p_T^J > 400$ GeV for M_N mass range 1 - 2.9 TeV.
- Transverse momentum for leading lepton $p_T^{e^{\pm}} > 200$ GeV for M_N mass range 700 900GeV and $p_T^{e^{\pm}} > 250$ GeV for M_N mass range 1 - 2.9 TeV.
- Polar angle of lepton and fat-jet $|\cos \theta_e| < 0.85$, $|\cos \theta_J| < 0.85$.

3 TeV e⁻e⁺ collider

Alternative scenario under $U(1)_X$

AD, Okada, Raut AD, Okada, Okada, Raut

	$SU(3)_c$	$SU(2)_L$	$U(1)_Y$	$U(1)_X$
q_{L_i}	3	2	1/6	$(1/6)x_H + (1/3)$
u_{R_i}	3	1	2/3	$(2/3)x_H + (1/3)$
d_{R_i}	3	1	-1/3	$-(1/3)x_H + (1/3)$
ℓ_{L_i}	1	2	-1/2	$(-1/2)x_H - 1$
e_{R_i}	1	1	-1	$-x_H-1$
H	1	2	-1/2	$(-1/2)x_H$
$N_{R_{1,2}}$	1	1	0	-4
N_{R_3}	1	1	0	+5
H_E	1	2	-1/2	$(-1/2)x_H + 3$
Φ_A	1	1	0	+8
Φ_B	1	1	0	-10
Φ_C	1	1	0	-3

Possible alternative B - L, with $x_H = 0$

Detailed scalar sector study In Progress

$$\mathcal{L}_{Y} \supset -\sum_{i=1}^{3} \sum_{j=1}^{2} Y_{D}^{ij} \overline{\ell_{L}^{i}} H_{E} N_{R}^{j} - \frac{1}{2} \sum_{k=1}^{2} Y_{N}^{k} \Phi_{A} \overline{N_{R}^{k^{c}}} N_{R}^{k} - \frac{1}{2} Y_{N}^{3} \Phi_{B} \overline{N_{R}^{3^{c}}} N_{R}^{3} + \text{h.c.}$$

Bounds on the $U(1)_X$ gauge coupling

CMS PAS EXO -19 - 019 ee(139 fb⁻¹) + $\mu\mu$ (140 fb⁻¹)

 2ℓ , ATLAS: 1903.06248 (139 fb⁻¹)

ATLAS Simulation --- Expected limit Expected $\pm 10^{-2}$ | Expected $\pm 2\sigma$ | Expect

ATLAS – TDR – 027¹⁰⁷¹2.5 3 3.5 3.5 ee (Prospective)

 $m_{Z'} = 3 \text{ TeV}.$

Solid

$$m_{N^1} = m_{Z'}/4$$

 $m_{N^2} > m_{Z'}/2$

Dashed

$$m_{N^{1,2}} = m_{Z'}/4.$$

Top \rightarrow bottom : Solid (Red, Black, Blue) x_H

Up and down quarks Heavy neutrinos

Charged leptons

Production of the heavy neutrino at the ILC

Dashed lines represent the Atl. B - L case

As a result ILC is a powerful machine to probe Z' beyond HL – LHC

$$\left(\sigma\left(e^{+}e^{-} \to Z'^{*} \to N^{i}N^{i}\right)\right) \\
\simeq \frac{(Q_{N^{i}})^{2}}{24\pi}s\left(\frac{g_{BL}}{m_{Z'}}\right)^{4}\left(1 - \frac{4m_{N^{i}}^{2}}{m_{Z'}^{2}}\right)^{\frac{3}{2}}.$$

Long lived RHNs

B - L case, $x_H = 0$

Longest lived RHN life time is inversely proportional to $m_{lightest} \rightarrow 0$ leads to the long lived species as a potential DM candiadte

Other interesting aspects in the $U(1)_x$ scenario Ditect heavy neutrino searches Such models can successfully fit a potential Dark matter candidate (N₃) prompt/boosted/long — lived Depending upon the model parameters from the heavy resonance induced pair production Relic paired displaced RHN decay Bossted objects like: W, Higgs is possible in this scenario displaced decay of the heavy neutrino Z' portal, Higgs portal discriminator: leptons insde the jet cone small to heavy mass range can be successfully probed Direct Such sceanrios will appear in pair from the heavy resonance rare in SM studying the tracks In progress Mono – jet, mono – photon LHC

Type – III seesaw

 $SM + SU(2)_I$ triplet fermion

Franceschini, Hambye, Strumia Biggio, Bonnet Goswami, Poulose Jana, Okada, Raut; Biggio, Fernandez Martinez, Hernandez Garcia, Lopez Pavon Goswami, Vishnudath, Khan AD, Mandal, Modak; AD, Mandal; Bandyopadhyay, Jangid, Mitra

$$\mathcal{L} = \mathcal{L}_{SM} + \text{Tr}(\overline{\Psi}i\gamma^{\mu}D_{\mu}\Psi) - \frac{1}{2}M\text{Tr}(\overline{\Psi}\Psi^{c} + \overline{\Psi}^{c}\Psi) - \sqrt{2}(\overline{\ell_{L}}Y_{D}^{\dagger}\Psi H + H^{\dagger}\overline{\Psi}Y_{D}\ell_{L})$$

$$\Psi = \begin{pmatrix} \Sigma^{0}/\sqrt{2} & \Sigma^{+} \\ \Sigma^{-} & -\Sigma^{0}/\sqrt{2} \end{pmatrix} \text{ and } \Psi^{c} = \begin{pmatrix} \Sigma^{0c}/\sqrt{2} & \Sigma^{-c} \\ \Sigma^{+c} & -\Sigma^{0c}/\sqrt{2} \end{pmatrix}$$

$$-\mathcal{L}_{mass} = (\overline{e}_{L} \ \overline{\Sigma}_{L}) \begin{pmatrix} m_{\ell} \ Y_{D}^{\dagger}v \\ 0 \ M \end{pmatrix} \begin{pmatrix} e_{R} \\ \Sigma_{R} \end{pmatrix} + \frac{1}{2} (\overline{\nu_{L}^{c}} \ \overline{\Sigma_{R}^{0}}) \begin{pmatrix} 0 & Y_{D}^{T} \frac{v}{\sqrt{2}} \\ Y_{D} \frac{v}{\sqrt{2}} & M \end{pmatrix} \begin{pmatrix} \nu_{L} \\ \Sigma_{R}^{0c} \end{pmatrix} + h.c. \qquad m_{\nu} \simeq -\frac{v^{2}}{2} Y_{D}^{T} M^{-1} Y_{D} = M_{D} M^{-1} M_{D}^{T}$$

$$\Gamma(\Sigma^{\pm} \to \nu W) = \frac{g^{2} |V_{\ell \Sigma}|^{2}}{32\pi} \left(\frac{M^{3}}{M_{W}^{2}}\right) \left(1 - \frac{M_{W}^{2}}{M^{2}}\right)^{2} \left(1 + 2\frac{M_{W}^{2}}{M^{2}}\right)$$

$$\Gamma(\Sigma^{\pm} \to \ell Z) = \frac{g^{2} |V_{\ell \Sigma}|^{2}}{64\pi \cos^{2} \theta_{W}} \left(\frac{M^{3}}{M_{Z}^{2}}\right) \left(1 - \frac{M_{Z}^{2}}{M^{2}}\right)^{2} \left(1 + 2\frac{M_{Z}^{2}}{M^{2}}\right)$$

$$\Gamma(\Sigma^{\pm} \to \ell A) = \frac{g^{2} |V_{\ell \Sigma}|^{2}}{64\pi} \left(\frac{M^{3}}{M_{W}^{2}}\right) \left(1 - \frac{M_{L}^{2}}{M^{2}}\right)^{2},$$

$$\Gamma(\Sigma^{\pm} \to \nu W) = \frac{2G_{F}^{2} V_{ud}^{2} \Delta M^{3} f_{\pi}^{2}}{\pi} \sqrt{1 - \frac{m_{\pi}^{2}}{\Delta M^{2}}}$$

$$\Gamma(\Sigma^{\pm} \to \Sigma^{0} e \nu_{e}) = \frac{2G_{F}^{2} \Delta M^{5}}{15\pi}$$

$$\Gamma(\Sigma^{\pm} \to \Sigma^{0} e \nu_{e}) = 0.12 \Gamma(\Sigma^{\pm} \to \Sigma^{0} e \nu_{e})$$

$$\Gamma(\Sigma^{\pm} \to \Sigma^{0} \mu \nu_{\mu}) = 0.12 \Gamma(\Sigma^{\pm} \to \Sigma^{0} e \nu_{e})$$

$$\Gamma(\Sigma^{\pm} \to \Sigma^{0} \pi^{\pm}) = \frac{2G_F^2 V_{ud}^2 \Delta M^3 f_{\pi}^2}{\pi} \sqrt{1 - \frac{m_{\pi}^2}{\Delta M^2}}$$

$$\Gamma(\Sigma^{\pm} \to \Sigma^{0} e \nu_e) = \frac{2G_F^2 \Delta M^5}{15\pi}$$

$$\Gamma(\Sigma^{\pm} \to \Sigma^{0} \mu \nu_{\mu}) = 0.12\Gamma(\Sigma^{\pm} \to \Sigma^{0} e \nu_e)$$

$$\begin{split} &\Gamma(\Sigma^0 \to \ell^+ W) = \Gamma(\Sigma^0 \to \ell^- W) = \frac{g^2 |V_{\ell \Sigma}|^2}{64\pi} \Big(\frac{M^3}{M_W^2}\Big) \Big(1 - \frac{M_W^2}{M^2}\Big)^2 \Big(1 + 2\frac{M_W^2}{M^2}\Big) \\ &\Gamma(\Sigma^0 \to \nu Z) = \Gamma(\Sigma^0 \to \overline{\nu} Z) = \frac{g^2 |V_{\ell \Sigma}|^2}{128\pi \cos^2 \theta_W} \Big(\frac{M^3}{M_Z^2}\Big) \Big(1 - \frac{M_Z^2}{M^2}\Big)^2 \Big(1 + 2\frac{M_Z^2}{M^2}\Big) \\ &\Gamma(\Sigma^0 \to \nu h) = \Gamma(\Sigma^0 \to \overline{\nu} h) = \frac{g^2 |V_{\ell \Sigma}|^2}{128\pi} \Big(\frac{M^3}{M_W^2}\Big) \Big(1 - \frac{M_h^2}{M^2}\Big)^2, \end{split}$$

Mass-mixing limit plots

AD, Mandal, Modak;

Conclusions

We study the models with the heavy fermions under the simple extensions of the SM where the neutrino mass is generated by the seesaw mechanism at the tree level to reproduce the neutrino oscillation data.

We find that such heavy fermions can be tested at the underground experiments- at the proton-proton, electron positron and electron-proton colliders. We have calculated the bounds on the light-heavy mixings for the electron-positron collider which could be probed in the near future.

Thank You

