ANOMALIES 2020 IIT Hyderabad

MeV Scale SIMP Dark Matter, Neutrino Mass and Leptogenesis

Dr. Ayon Patra

Vellore Institute of Technology, Chennai Campus

Outline

Model

Relic Abundance and Self Interaction

Neutrino Mass

Leptogenesis

Model

- WIMP Dark Matter with mass above a few GeV is severely constrained from experiments.
- DM with mass around the MeV range still remains a viable option.
- Several other observations Missing Satellite Problem, Too big to fail, Core-cusp problem.
- Can be addressed by introducing Strongly Interacting Massive Particle (SIMP) Dark Matter.

- A simple model of SIMP.
- Standard Model extended with 3 right-handed neutrinos (N_1, N_2, N_3) and two scalars (ϕ, δ) .
- N_1, N_2, N_3 needed for neutrino mass and leptogenesis.
- A discrete Z_2 symmetry is introduced for stability of DM.
- The scalar ϕ is odd under this symmetry and is the DM candidate.
- Scalar δ plays multiple roles DM mass, 3 \rightarrow 2 DM annihilation process, important role in leptogenesis.

Vacuum expectation values of the scalar fields

$$\langle H \rangle = v_H, \quad \langle \delta \rangle = v_\delta$$

The scalar potential

$$V = \frac{\lambda_{11}}{4!} \phi^4 + \frac{\mu_{\phi}^2}{2} \phi^2 + \frac{\lambda_{12}}{4} \phi^2 \delta^2 + \frac{\mu_{\delta}^2}{2} \delta^2 + \frac{\mu_{22}}{3!} \delta^3 + \frac{\lambda_{22}}{4!} \delta^4 + \frac{\mu_{21}}{2} \phi^2 \delta$$
$$+ \frac{\lambda_{13}}{2} \phi^2 H^{\dagger} H + \mu_{23} \delta H^{\dagger} H + \frac{\lambda_{23}}{2} \delta^2 H^{\dagger} H + \mu_{H}^2 H^{\dagger} H + \lambda_{33} \left[H^{\dagger} H \right]^2.$$

- Higgs invisible decay BR restricts $\lambda_{13} < \mathcal{O}(10^{-2})$.
- DM mass

$$M_{\phi}^{2} = \left(\frac{\lambda_{12}}{2}v_{\delta}^{2} + 2\lambda_{13}v_{H}^{2} + \mu_{12}v_{\delta} + 2\mu_{\phi}^{2}\right).$$

- For couplings λ_{11} , $\lambda_{12} \sim 1$, the DM mass must be in the MeV range for correct relic density.
- We need to choose $v_{\delta} \sim \text{MeV}$ and $\lambda_{13} \leq 10^{-6}$.
- This tiny coupling also helps evade the direct detection constraints.
- The Higgs scalar mass-squared matrix (H^0 , δ) is given as

$$M_H^2 = \begin{bmatrix} \frac{1}{2}\lambda_{22}v_\delta^2 + 2\lambda_{23}v_H^2 + 6\mu_{22}v_\delta + 2\mu_\delta^2 & -\frac{v_\delta}{3\sqrt{2}v_H} \left(\lambda_{22}v_\delta^2 + 18\mu_{22}v_\delta + 12\mu_\delta^2\right) \\ -\frac{v_\delta}{3\sqrt{2}v_H} \left(\lambda_{22}v_\delta^2 + 18\mu_{22}v_\delta + 12\mu_\delta^2\right) & 4\lambda_{33}v_H^2 \end{bmatrix}.$$

- The mixing is proportional to $\frac{v_{\delta}}{v_{H}}$ and hence extremely small.
- We require $m_{\delta} \sim {\rm MeV}$, hence $\lambda_{23} \leq 10^{-6}$.

Relic Abundance and Self Interaction

- SIMP dark matter usually comprises of $3\phi \rightarrow 2\phi$ or $4\phi \rightarrow 2\phi$.
- We explore an assisted annihilation process.
- We consider $m_\phi < m_\delta < 2m_\phi$, so the important diagrams contributing to the DM relic density

The Boltzmann's equations for the evolution of the number density

$$\frac{dY_{\phi}}{dx} = -\frac{xs^2}{3H(m_{\phi})} \left\langle \sigma v^2 \right\rangle_{3\to 2} (Y_{\phi}^3 - Y_{\phi} Y_{\delta} Y_{\phi}^{eq}) + \frac{xs}{H(m_{\phi})} \left\langle \sigma v \right\rangle_{2\to 2} (Y_{\phi}^2 - Y_{\delta}^2)$$

$$\frac{dY_{\delta}}{dx} = +\frac{xs^2}{6H(m_{\phi})} \left\langle \sigma v^2 \right\rangle_{3\to 2} (Y_{\phi}^3 - Y_{\phi} Y_{\delta} Y_{\phi}^{eq}) - \frac{xs}{H(m_{\phi})} \left\langle \sigma v \right\rangle_{2\to 2} (Y_{\phi}^2 - Y_{\delta}^2),$$

where

$$\begin{split} Y_i &= n_i/s \text{, } x = m_\phi/T \text{ and } H(m_\phi) = \sqrt{\frac{\pi^2 g^*}{90}} \frac{m_\phi^2}{M_{pl}}. \\ \left<\sigma_{3\to 2} v^2\right> &= \frac{\lambda_{11}^2 \mu_{\text{eff}}^2}{64\pi m_\phi^3} \sqrt{\left(1 - \frac{(m_\phi + m_\delta)^2}{9m_\phi^2}\right) \left(1 - \frac{(m_\delta - m_\phi)^2}{9m_\phi^2}\right)} \frac{1}{64m_\phi^4} \text{,} \\ \mu_{\textit{eff}} &= \mu_{12} + \frac{\lambda_{12} v_\delta}{2} \,. \end{split}$$

Relic Density Plot

Observations from Galaxy clusters put severe constraints on the self-scattering cross-section of DM

$\sigma_{\rm self}/m_{\phi}({\rm cm}^2/{\rm g})$	Observations
$\sim (1.7 \pm 0.7) \times 10^{-4}$	Bright cluster galaxies in the 10 kpc core of Abell 3827 [60]
~ 0.1	Cores in clusters [61, 62]
~ 1.5	Abell 3827 subhalos [63]
~ 1	Abell 520 cluster [64–66]
$\lesssim 1$	Halo shapes and Bullet cluster [67, 68]

Diagrams contributing to the self-scattering

Self-scattering cross-section

$$\sigma_{\rm self} = \frac{1}{64\pi m_\phi^2} |\mathcal{M}|^2$$
 where $i\mathcal{M} = i\left(\lambda_{11} + \mu_{\rm eff}^2 \frac{1}{(s-m_\delta^2)} + \mu_{\rm eff}^2 \frac{1}{(t-m_\delta^2)} + \mu_{\rm eff}^2 \frac{1}{(u-m_\delta^2)}\right)$
$$\mu_{\it eff} = \mu_{12} + \frac{\lambda_{12} v_\delta}{2}$$

 $\sigma_{\rm self}/m_{\phi} \lesssim 0.1~{\rm cm}^2/{\rm g}$ (blue), $0.1~{\rm cm}^2/{\rm g} \lesssim \sigma_{\rm self}/{\rm m}_{\phi} \lesssim 1~{\rm cm}^2/{\rm g}$ (red), $1~{\rm cm}^2/{\rm g} \lesssim \sigma_{\rm self}/{\rm m}_{\phi} \lesssim 1.5~{\rm cm}^2/{\rm g}$ (green), $1.5~{\rm cm}^2/{\rm g} \lesssim \sigma_{\rm self}/{\rm m}_{\phi} \lesssim 3~{\rm cm}^2/{\rm g}$ (yellow) and $3~{\rm cm}^2/{\rm g} \lesssim \sigma_{\rm self}/{\rm m}_{\phi} \lesssim 10~{\rm cm}^2/{\rm g}$ (cyan).

Neutrino Mass

Neutrino part of the Lagrangian

$$\mathcal{L}_Y \supset \left[Y_{D_{ij}} L_i^T i \sigma_2 H N_j + \frac{1}{2} M_{N_{ij}} \overline{N_i^c} N_j + \frac{1}{2} f_{ij} \overline{N_i^c} N_j \delta \right] + \text{H.C.}$$

Neutrino mass is generated by Type-I seesaw mechanism with

$$M_{D_{ij}}=Y_{D_{ij}}v_H$$
 , $M_{R_{ij}}=M_{N_{ij}}+f_{ij}v_\delta$

 The lightest RHN mass is chosen to be a few MeV as a requirement for successful leptogenesis.

Other two RHNs are around 10 TeV mass.

Hierarchy in M_D to satisfy the oscillation data.

Leptogenesis

 $\text{Lepton asymmetry given as} \ \ \epsilon_2 = -\sum_i \left[\frac{\Gamma(N_2 \to \bar{l_i}H^*) - \Gamma(N_2 \to l_iH)}{\Gamma_{\text{tot}}(N_2)} \right]$

Total decay width of N_2 considering both channels

$$\Gamma_{\text{tot}}(N_2) = \frac{(Y_{D_{2i}}^{\dagger} Y_{D_{2i}}) + |f_{12}|^2}{4\pi} M_{N_2}$$

The CP asymmetry is

$$\epsilon_2 = \frac{1}{8\pi} \left([g_V(x) + g_S(x)] \mathcal{T}_{23} + g_S(x) \mathcal{S}_{23} \right),$$

where $g_V(x) = \sqrt{x}\{1 - (1+x)\ln[(1+x)/x]\}$, $g_S(x) = \sqrt{x}/(1-x)$

$$\mathcal{T}_{23} = \frac{\operatorname{Im}[(Y_{D_{2i}}Y_{D_{3i}}^{\dagger})^{2}]}{(Y_{D_{2i}}^{\dagger}Y_{D_{2i}}) + |f_{21}|^{2}}, \quad \mathcal{S}_{23} = \frac{\operatorname{Im}[(Y_{D_{2i}}Y_{D_{3i}}^{\dagger})(f_{21}f_{31}^{\dagger})]}{(Y_{D_{2i}}^{\dagger}Y_{D_{2i}}) + |f_{21}|^{2}}$$

with $x = M_{N_3}^2 / M_{N_2}^2$.

In the case when $M_{N_2} \simeq M_{N_3}$, the self energy correction term can significantly enhance the CP asymmetry.

This is known as resonant leptogenesis.

The CP asymmetry in this case approximately becomes

$$\epsilon_2 \simeq -\frac{1}{16\pi} \left[\frac{M_{N_3}}{v^2} \frac{Im[(Y_D^* m_\nu Y_D^{\dagger})_{22}]}{(Y_D^{\dagger} Y_D)_{22} + |f_{21}|^2} + \frac{Im[(Y_D Y_D^{\dagger})_{23} (f_{21} f_{31}^{\dagger})]}{(Y_D^{\dagger} Y_D)_{22} + |f_{21}|^2} \right] R$$

where $R \equiv |M_{N_2}|/(|M_{N_3}-M_{N_2}|)$ is the resonant factor.

In absence of the second term, one would need $R\sim 10^{6-7}$ to generate the required asymmetry. This means $M_{N_3}-M_{N_2}\approx 10^{-2}\,{\rm GeV}$ which is highly fine tuned.

Look at the second term
$$\frac{Im[(Y_DY_D^\dagger)_{23}(f_{21}f_{31}^\dagger)]}{(Y_D^\dagger Y_D)_{22}+|f_{21}|^2}$$
 .

The coupling f_{21} is constrained by the out-of-equilibrium condition

$$\Gamma_{N_2} < H|_{T=M_{N_2}}$$

which gives

$$\sqrt{|f_{21}|^2} < 3 \times 10^{-4} \sqrt{M_{N_2}/10^9 (\text{GeV})}$$
.

 f_{31} has no such constraints and can enhance the asymmetry.

Can help alleviate the fine tuning.

Lepton asymmetry can be obtained quite naturally in this case.

Summary

- Overview of a simple model of SIMP DM.
- The SM was augmented with three RHN and two scalar.
- A discrete Z_2 symmetry protected the DM candidate from decaying.
- We could explain the observed relic density, neutrino mass and the baryon asymmetry of the universe through leptogenesis.
- Several other details are discussed in the paper.

Lank Mu Tour

Backup Slides

Relic Density for various v_{δ}

The mean free path for scattering of DM is given as

$$\lambda_{\text{scatt}} = \frac{\sigma_{\text{self}}}{m_{\phi}} \rho \, v,$$

where $\sigma_{\rm self},~\rho,~v~{
m and}~m_{\phi}$ are the self-scattering cross-section, density, velocity and mass of DM.

Study of galaxy clusters provide values of density and velocity of DM at the core while $\lambda_{\rm scatt}$ is around the size of the galaxy cluster.

This provides limits for $\sigma_{\rm self}/m_{\phi}$.