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Why b→s𝝁𝝁 ?

▪ Transitions suppressed in the SM.

▪ Potentially sensitive to NP. 

▪ Type of NP: Tree level ? loop level ? 

▪ Question: NP or Hadronic uncertainties?

▪ Angular, Diff BF: Hadronic uncertainties. 

▪ Ratios (𝑅𝐾(∗)):  Theoretically clean.

▪ “Optimized” observables (?)
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Theory and operator basis



b→s𝝁𝝁: Data

▪ Angular observables (moments, Likelihood): 𝐵0 → 𝐾∗0𝜇+𝜇−: JHEP 02, 104 
(2016), P.R.L 125 (2020) 1(LHCb), 011802 and JHEP 10, 047 (2018) (ATLAS). (𝑃4′, 𝑃5′): P.R.L. 118, 
111801 (2017)(Belle) , 𝐴𝐼(𝐵 → 𝐾∗): JHEP 06, 133 (2014)(LHCb). 𝐵+ → 𝐾+𝜇+𝜇− (𝐴𝐹𝐵, 𝐹𝐻): PRD 98, 
112011, (2018)(CMS). 𝐵𝑠 → 𝜙𝜇+𝜇−: JHEP 09, 179 (2015)(LHCb).

▪ Differential branching fractions: 𝐵0 → 𝐾∗0𝜇+𝜇−: JHEP 11, 047 (2016), 𝐵+ → 𝐾∗+𝜇+𝜇−:JHEP 06, 
133 (2014)(LHCb). 𝐵+ → 𝐾+𝜇+𝜇− and 𝐵0 → 𝐾0𝜇+𝜇−: JHEP 06, 133 (2014)(LHCb), 
1908.01848(Belle). 𝐴𝐼(𝐵 → 𝐾): JHEP 06, 133 (2014)(LHCb), 1908.01848(Belle). 

▪ 𝑹𝑲∗, low and central bin: Old result: JHEP 08, 055 (2017)(LHCb). Recent measurements: 
arXiv:1904.02440 (Belle). 𝑹𝑲: Old result: PRL 113 (2014), 151601(LHCb). Updated result: 
PRL 122 (2019) 19, 191801(LHCb). Also arXiv: 1908.01848(Belle).

▪ BR(𝑩𝒔 → 𝝁+𝝁−): HFLAV (Average of CMS, ATLAS and LHCb).

▪ Radiative modes: BR(𝐵 → 𝑋𝑠𝛾): Eur. Phys. J. C77, 201 (2017), BR( 𝐵𝑠→ 𝜙𝛾): Nucl. Phys. B867, 1 
(2013)(LHCb), BR(𝐵+,0 → 𝐾∗ 𝛾): 1412.7515(HFLAV)
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The different datasets     

Data displayed in the previous slide combined into five datasets;

1. Likelihood New dataset (214)

2. Moment New dataset (258)

3. Likelihood Old dataset (211) 

4. Moment Old dataset (255)

5. Likelihood 2020 dataset (224) (complex case)

(Old: Old RK∗(LHCb,2017), Old RK LHCb, 2014 .

𝐍𝐞𝐰:Old RK∗(LHCb,2017)+New RK∗(Belle,2019), 

Old RK LHCb, 2014 →New RK(LHCb,Belle,2019).
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𝐋𝐞𝐬𝐬𝐨𝐧𝐬 𝐟𝐫𝐨𝐦 𝐑𝐊 𝐑𝐊∗: 1 operator scenarios
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𝐋𝐞𝐬𝐬𝐨𝐧𝐬 𝐟𝐫𝐨𝐦 𝐑𝐊 𝐑𝐊∗: 2 operator scenarios
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𝐋𝐞𝐬𝐬𝐨𝐧𝐬 𝐟𝐫𝐨𝐦 𝐑𝐊 𝐑𝐊∗: 2 operator scenarios
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Comparison: 1 operator scenarios
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The curious case of Δ𝑪𝟗

▪ Both for purely real and complex cases, the only one operator scenario 

that yields an acceptable fit for the data is ΔC9.

▪ Real: 1 parameter, Complex: 2 parameters.

▪ General notion: Real part consistent with -1.

▪ Imaginary part small (~0)

But…
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The curious case of Δ𝑪𝟗
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The curious case of Δ𝑪𝟗

What is the reason for this imaginary part being 
inconsistent with 0 at 1σ?
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The curious case of Δ𝑪𝟗



b→s𝝁𝝁: How?

▪ “…a clever choice of observables could drastically reduce the sensitivity to 
hadronic inputs and enhance the sensitivity to New Physics” (JHEP 12 (2014) 125, 
(SDG, JM etal)).

▪ “…even optimized observables are affected by sizable uncertainties, since 
hadronic contributions generated by current-current operators with charm are 
difficult to estimate, especially for q 2 ∼ 4𝑚𝑐

2 ≃ 6.8 GeV2.” (JHEP 06 (2016) 116, 
(LS, AP etal)). 

▪ Plethora of data. Data-Driven Analysis: Let data decide the model. Works in 
principle for both NP and Hadronic (form factor) models. (For form factor “model 
selection”: look into JHEP 06, 165 (2020) ,(SJ,SN,SP) & JHEP 08 (2020) 08, 006, 
(SI, RW).



The problem of model selection
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The problem of Model selection



The problem of Model selection

▪ The general problem of model selection: A model can almost 
never represent a certain observation exactly. Simplistic model 
→ too few parameters → unrealistically simple assumptions →
high bias → poor prediction. Large no. of parameters → fit noise 
as well → miss important trends. 

▪ Motivation: “All models are wrong but some are useful.” 
(George E.P. Box, Journal of the American Statistical Association, 

Volume 71, 1976-issue 356).



Model Selection: How?

▪ One of the most powerful, reliable but computationally expensive
methods.

▪ Most straightforward (most expensive) →Leave One Out Cross 
Validation:

1. N data points and a set of models. 
2. Remove n-th data point from sample.
3. Fit model to remaining N-1 points.
4. Compute Loss for the n-th left out data point.
5. Repeat.
6. Calculate Mean Loss (MSE) for the model from step 4.

▪ Draws on predictive error ⇒ can detect under and overfitting.

▪ Drawback: Small data-set → becomes unstable

Cross-Validation does this…



▪ AIC = χmin
2 + 2K Akaike (1974) & Takeuchi (1976)

n ≫ K

▪ AICc = χmin
2 + 2K +
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Sugiura (1978)
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▪ Drawback: Depend on MLE estimate and don’t account for uncertainty 
in data. Too Simple models selected.

AICC previously used in Eur.Phys.J. C79 (2019) no.1, 21
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Model Selection: How?
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So a comparative global b→s𝝁+𝝁−?

▪ 9 CW’s (Wilson Coefficients) →
C7
′ , ΔC9, C9

′ , ΔC10, C10
′ , CS, CS

′ , CP, CP
′

▪ All real → 511 combinations, 9 parameters . 

▪ Complex →1022 (Real+Real&Imaginary), 18 parameters.

▪ > 200 obs. ⇒ Cross Validation can be done

▪ 2 types of Angular obs. →
1. Unbinned Max. Likelihood (total >210)
2. Principal Moments (total >250)

▪ Neither wi
ΔAICc nor MSE tells  the whole truth.

▪ Why not use both wi
ΔAICc and MSE?
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Methodology

▪ Define models: Real → 511 models, Complex →1022 

▪ Optimize: Frequentist 𝜒2 optimization on all models. 5 types of fit 
corresponding to the five datasets .

▪ All optimizations done with a Mathematica package OpTex (S.Patra).

▪ Post Process: Find outliers (“Pulls”) & “influential data” (“Cook’s 
distances”). Normality check for pull distribution.

▪ Fisher Matrix: Gaussian parameter-profile likelihoods → HESSE errors. 
Profile Likelihood curve: 1𝜎 CL of profile likelihoods of the said 
parameter.
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Results: Model selection (Likelihood 2020) 
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Results: Model Selection (New data)
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The impact of 𝑹𝑲 ∗ (𝐌𝐨𝐦𝐞𝐧𝐭𝐬)
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The impact of 𝑹𝑲(∗)(𝐋𝐢𝐤𝐞𝐥𝐢𝐡𝐨𝐨𝐝)



26

𝑹𝑲(∗) predictions

Real Real

Complex
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𝑷𝟓
′ predictions

Real Real

Complex
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𝐑𝐊∗
𝐥𝐨𝐰 and Radiative constraints 
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𝐂𝐨𝐧𝐬𝐭𝐫𝐚𝐢𝐧𝐭𝐬 𝐟𝐫𝐨𝐦 𝐁𝐬 → 𝛍𝛍
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𝐪𝟐 𝐝𝐢𝐬𝐭𝐫𝐢𝐛𝐮𝐭𝐢𝐨𝐧𝐬 𝐟𝐨𝐫 𝐨𝐛𝐬𝐞𝐫𝐯𝐚𝐛𝐥𝐞𝐬



Discussions and Future Prospects

▪ No NP in electron modes. 

▪ Correlations between SM and NP parameters neglected. Only analysis by 
2006.03489 (FM etal., GAMBIT) involving “Re(C7,9,10)” only.

▪ Involved analysis involving imaginary parts. 

▪ Comparing distributions rather than MLE estimates: Bayesian model selection.

▪ Data points with large uncertainties: Bayesian might miss portions of parameter 
space. (shown for b→ cτν in talk by S.P. and 2008.04316 (SN, SP etal.) ): Neural 
Network.

We’re on it. Stay Tuned!
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𝑏𝑎𝑐𝑘𝑢𝑝: 𝑞2 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠 𝑓𝑜𝑟 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑏𝑙𝑒𝑠 (w.o. LFUV) 
(moments)



𝑏𝑎𝑐𝑘𝑢𝑝: 𝑞2 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠 𝑓𝑜𝑟 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑏𝑙𝑒𝑠 (w.o. LFUV)
(moments)
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Results: Comparison: CP averaged (Likelihood)
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Results: Comparison: Optimized (Moment)
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Backup: Results: Comparison: CP averaged (Moments)
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Backup: Results: Comparison: Optimized (Likelihood)
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Backup: Allowed parameter spaces (1 & 2)
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Backup: Zero crossing values
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backup: Results: Model Selection (Old data)
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backup: Results: Model Selection (Old data)
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backup:Results: Model Selection (New data)


