

भारतीय प्रौद्योगिकी संस्थान गुवाहाटी INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI

Global Model Selection in b \rightarrow s $\mu\mu$ decays:

Based on P.R.D 101 (2020) 5, 055025 & arXiv:2004.14687. In collaboration with Soumitra Nandi, Ipsita Ray, Srimoy Bhattacharya, and Sunando Patra

Why b \rightarrow s $\mu\mu$?

- Transitions suppressed in the SM.
- Potentially sensitive to NP.
- Type of NP: Tree level ? loop level ?
- Question: NP or Hadronic uncertainties?
- Angular, Diff BF: Hadronic uncertainties.
- Ratios ($R_{K^{(*)}}$): Theoretically clean.
- "Optimized" observables (?)

Theory and operator basis

$$\mathcal{H}_{eff} = -\frac{4\,G_F}{\sqrt{2}} \left(\lambda_t \mathcal{H}_{eff}^{(t)} + \lambda_u \mathcal{H}_{eff}^{(u)} \right)$$

$$egin{aligned} \mathcal{H}_{eff}^{(t)} &= C_1 \mathcal{O}_1^c + C_2 \mathcal{O}_2^c + \sum_{i=3}^6 C_i \mathcal{O}_i + \ &\sum_{i=7,8,9,10,P,S} (C_i \mathcal{O}_i + C_i' \mathcal{O}_i') \,, \ &\mathcal{H}_{eff}^{(u)} &= C_1 (\mathcal{O}_1^c - \mathcal{O}_1^u) + C_2 (\mathcal{O}_2^c - \mathcal{O}_2^u) \,. \end{aligned}$$

$$\begin{aligned} \mathcal{O}_{7} &= \frac{e}{g^{2}} m_{b} (\bar{s} \sigma_{\mu\nu} P_{R} b) F^{\mu\nu}, \quad \mathcal{O}_{7}' = \frac{e}{g^{2}} m_{b} (\bar{s} \sigma_{\mu\nu} P_{L} b) F^{\mu\nu}, \\ \mathcal{O}_{9} &= \frac{e^{2}}{g^{2}} (\bar{s} \gamma_{\mu} P_{L} b) (\bar{\mu} \gamma^{\mu} \mu), \quad \mathcal{O}_{9}' = \frac{e^{2}}{g^{2}} (\bar{s} \gamma_{\mu} P_{R} b) (\bar{\mu} \gamma^{\mu} \mu), \\ \mathcal{O}_{10} &= \frac{e^{2}}{g^{2}} (\bar{s} \gamma_{\mu} P_{L} b) (\bar{\mu} \gamma^{\mu} \gamma_{5} \mu), \quad \mathcal{O}_{10}' = \frac{e^{2}}{g^{2}} (\bar{s} \gamma_{\mu} P_{R} b) (\bar{\mu} \gamma^{\mu} \gamma_{5} \mu), \\ \mathcal{O}_{S} &= \frac{e^{2}}{16\pi^{2}} m_{b} (\bar{s} P_{R} b) (\bar{\mu} \mu), \quad \mathcal{O}_{S}' = \frac{e^{2}}{16\pi^{2}} m_{b} (\bar{s} P_{L} b) (\bar{\mu} \mu), \\ \mathcal{O}_{P} &= \frac{e^{2}}{16\pi^{2}} m_{b} (\bar{s} P_{R} b) (\bar{\mu} \gamma_{5} \mu), \quad \mathcal{O}_{P}' = \frac{e^{2}}{16\pi^{2}} m_{b} (\bar{s} P_{L} b) (\bar{\mu} \gamma_{5} \mu). \end{aligned}$$

3

$b \rightarrow s \mu \mu$: Data

- Angular observables (moments, Likelihood): $B^0 \to K^{*0}\mu^+\mu^-$: JHEP 02, 104 (2016), P.R.L 125 (2020) 1(LHCb), 011802 and JHEP 10, 047 (2018) (ATLAS). (P_4, P_5) : P.R.L. 118, 111801 (2017)(Belle), $A_I(B \to K^*)$: JHEP 06, 133 (2014)(LHCb). $B^+ \to K^+\mu^+\mu^-$ (A_{FB}, F_H): PRD 98, 112011, (2018)(CMS). $B_S \to \phi\mu^+\mu^-$: JHEP 09, 179 (2015)(LHCb).
- Differential branching fractions: $B^0 \to K^{*0}\mu^+\mu^-$: JHEP 11, 047 (2016), $B^+ \to K^{*+}\mu^+\mu^-$:JHEP 06, 133 (2014)(LHCb). $B^+ \to K^+\mu^+\mu^-$ and $B^0 \to K^0\mu^+\mu^-$: JHEP 06, 133 (2014)(LHCb), 1908.01848(Belle). $A_I(B \to K)$: JHEP 06, 133 (2014)(LHCb), 1908.01848(Belle).
- *R_{K^{*}}*, low and central bin: Old result: JHEP 08, 055 (2017)(LHCb). Recent measurements: arXiv:1904.02440 (Belle). *R_K*: Old result: PRL 113 (2014), 151601(LHCb). Updated result: PRL 122 (2019) 19, 191801(LHCb). Also arXiv: 1908.01848(Belle).
- **BR**($B_s \rightarrow \mu^+ \mu^-$): HFLAV (Average of CMS, ATLAS and LHCb).
- Radiative modes: BR($B \to X_S \gamma$): Eur. Phys. J. C77, 201 (2017), BR($B_S \to \phi \gamma$): Nucl. Phys. B867, 1 (2013)(LHCb), BR($B^{+,0} \to K^* \gamma$): 1412.7515(HFLAV)

The different datasets

Data displayed in the previous slide combined into five datasets;

- 1. Likelihood New dataset (214)
- 2. Moment New dataset (258)
- 3. Likelihood Old dataset (211)
- 4. Moment Old dataset (255)
- 5. Likelihood 2020 dataset (224) (complex case) (Old: Old R_{K^*} (LHCb,2017), Old R_K (LHCb,2014). New: Old R_{K^*} (LHCb,2017)+New R_{K^*} (Belle,2019), Old R_K (LHCb,2014) \rightarrow New R_K (LHCb,Belle,2019).

Lessons from R_K R_{K*}: 1 operator scenarios

Lessons from R_K R_{K*}: 2 operator scenarios

Lessons from R_K R_{K*}: 2 operator scenarios

 ΔC_{10}

0.5

 $R_K^{Low}(Belle$

2.5

3.0

 $R_K^{Low}(LHCb)$

2.0

Comparison: 1 operator scenarios

Dataset	χ^2 /DOF	p-val(%)	Value	χ^2 /DOF	p-val(%)	Value
		0	7' 7		Δ	C_9
Likelihood 2020	317.42/214	5.52×10^{-6}	$Re(C_7') \rightarrow -0.040(13)$	234.22/214	16.35	$Re(\Delta C_9) \rightarrow -1.16(11)$ $Lm(\Delta C_7) \rightarrow 1.20(24)$
			$Im(C_7) \to 0.050(71)$			$Im(\Delta C_9) \rightarrow 1.39(34)$
Likelihood 2016	343.89/253	1.22×10^{-4}	$Re(C_7) \to -0.038(16)$ $Im(C_7') \to -0.0052(253)$	266.21/253	27.20	$Re(\Delta C_9) \rightarrow -1.27(14)$ $Im(\Delta C_9) \rightarrow -1.39(39)$
Mamanta 2016	244 62 /079	0.20	$Re(C_7') \rightarrow -0.033(16)$	099 41 /079	20.11	$Re(\Delta C_9) \rightarrow -1.31(18)$
Moments 2016	344.63/278	0.39	$Im(C'_7) \to -0.0059(305)$	288.41/278	32.11	$Im(\Delta C_9) \rightarrow 1.26(45)$
		0	~′ ′9		ΔC	C ₁₀
Likelihood 2020	326 1/214	1.20×10^{-6}	$Re(C'_{\underline{9}}) \rightarrow -0.13(15)$	313 55/214	1.06×10^{-5}	$Re(\Delta C_{10}) \rightarrow 0.66(18)$
2020	02011/211	1120 X 10	$Im(C'_9) \rightarrow -0.80(49)$	010.00/211	1.00 X 10	$Im(\Delta C_{10}) \rightarrow -1.88(28)$
Likelihood 2016	348.25/253	6.55×10^{-5}	$Re(C'_{9}) \rightarrow -0.19(15)$	342.12/253	1.58×10^{-4}	$Re(\Delta C_{10}) \rightarrow 0.38(14)$
	,		$Im(C_9) \rightarrow -0.25(78)$,		$Im(\Delta C_{10}) \rightarrow 0.23(65)$
Moments 2016	348.29/278	0.26	$Re(C_9) \rightarrow -0.099(148)$	334.22/278	1.16	$Re(\Delta C_{10}) \rightarrow 0.53(15)$
	,		$Im(C_9) \to -0.093(438)$,		$Im(\Delta C_{10}) \rightarrow -0.15(81)$
		C	10		C	s
Likelihood 2020	315.16/214	8.11×10^{-6}	$Re(C_{10}) \to 0.37(11)$	327.53/214	9.24×10^{-7}	$Re(C_S) \rightarrow -0.045(40)$
			$Im(C_{10}) \to -0.11(108)$			$Im(C_S) \rightarrow -0.0019(3709)$
Likelihood 2016	339.14/253	2.38×10^{-4}	$Re(C_{10}) \rightarrow 0.37(11)$	349.64/253	5.34×10^{-5}	$Re(C_S) \rightarrow -0.044(54)$
			$Im(C_{10}) \rightarrow 0.11(29)$			$Im(C_S) \rightarrow 0.0073(2424)$
Moments 2016	342.23/278	0.51	$Re(C_{10}) \rightarrow 0.31(12)$	348.52/278	0.26	$Re(C_S) \rightarrow -0.035(173)$ $Lm(C_{-}) \rightarrow 0.022(272)$
			$Im(C_{10}) \rightarrow -0.0023(3204)$		0	$Tm(\mathbb{C}_S) \to 0.022(213)$
		L.	P P $(G_{1}) = 0.0000(10.1)$		U	$\frac{S}{S}$
Likelihood 2020	327.52/214	9.26×10^{-7}	$Re(C_P) \rightarrow -0.0080(124)$ $Im(C_P) \rightarrow -0.0013(2282)$	327.54/214	9.23×10^{-7}	$Re(C_S) \rightarrow -0.045(39)$ $I_{}(C') \rightarrow -0.0012(4660)$
			$P_{-}(C_{-}) \rightarrow 0.0000(441)$			$Im(C_S) \rightarrow 0.0012(4660)$
Likelihood 2016	349.7/253	5.34×10^{-5}	$Im(C_P) \rightarrow -0.0069(441)$ $Im(C_P) \rightarrow -0.0095(5930)$	349.69/253	5.3×10^{-5}	$Re(C_S) \rightarrow 0.033(302)$ $I_{m}(C') \rightarrow 0.028(255)$
			$P_{\sigma}(C_{T}) \rightarrow 0.22(66)$			$P_{\pi}(C') \rightarrow -0.028(355)$
Moments 2016	348.45/278	0.26	$Im(C_P) \rightarrow -0.089(740)$	348.52/278	0.26	$Im(C'_S) \rightarrow -0.030(253)$ $Im(C'_S) \rightarrow -0.029(261)$
		C	/ 'P			
Likelihood 2020	227 40 /214	0.22×10^{-7}	$Re(C'_P) \rightarrow 0.0083(122)$			
Likelihood 2020	327.45/214	5.32 × 10	$Im(C'_P) \to 0.00046(17156)$			
Likelihood 2016	349.67/253	5.31×10^{-5}	$Re(C'_{P}) \to 0.0076(124)$			
2010	010101/200	0.01 A 10	$Im(C'_{P}) \to 0.00097(23752)$			
Moments 2016	348.53/278	0.26	$Re(C'_P) \rightarrow 0.0066(128)$			
	,		$Im(C'_P) \to 0.0015(2876)$			

TABLE I: Comparitive study of the results obtained from the analysis of different data set. The results are presented only for complex the Wilson coefficients (WC).

- Both for purely real and complex cases, the only one operator scenario that yields an acceptable fit for the data is ΔC_9 .
- Real: 1 parameter, Complex: 2 parameters.
- General notion: Real part consistent with -1.
- Imaginary part small (~0)

But...

$\begin{array}{c cccc} \chi^2_{Min}/DOF & p\mbox{-value}(\%) & parameter spaces \\ \hline 238.93/215 & 12.59 & Re(\Delta C_9) \rightarrow -1.10(11) \\ 234.22/214 & 16.35 & Re(\Delta C_9) \rightarrow -1.16^{+0.12}_{-0.11} \\ Im(\Delta C_9) \rightarrow 1.39^{+0.31}_{-0.39} \end{array}$	Wit	h CP-asymmetri	ic observables in $B_s \to \phi \mu \mu$
$\begin{array}{cccc} 238.93/215 & 12.59 & Re(\Delta C_9) \to -1.10(11) \\ 234.22/214 & 16.35 & Re(\Delta C_9) \to -1.16^{+0.12}_{-0.11} \\ Im(\Delta C_9) \to 1.39^{+0.31}_{-0.39} \end{array}$	χ^2_{Min}/DOF	p-value (%)	parameter spaces
$234.22/214 \qquad 16.35 \qquad Re(\Delta C_9) \to -1.16^{+0.12}_{-0.11} \\ Im(\Delta C_9) \to 1.39^{+0.31}_{-0.39}$	238.93/215	12.59	$Re(\Delta C_9) \rightarrow -1.10(11)$
$Im(\Delta C_9) \to 1.39^{+0.31}_{-0.39}$	234.22/214	16.35	$Re(\Delta C_9) \rightarrow -1.16^{+0.12}_{-0.11}$
			$Im(\Delta C_9) \to 1.39^{+0.31}_{-0.39}$

Without CP-asymmetric observables in $B_s \to \phi \mu \mu$

χ^2_{Min}/DOF	p-value (%)	parameter spaces
230.80/203	8.79	$Re(\Delta C_9) \rightarrow -1.10(11)$
225.93/202	11.9	$Re(\Delta C_9) \rightarrow -1.16(12)$
		$Im(\Delta C_9) \to -1.46^{+0.39}_{-0.31}$

11

What is the reason for this imaginary part being inconsistent with 0 at 1σ ?

$b \rightarrow s \mu \mu$: How?

- "...a clever choice of observables could drastically reduce the sensitivity to hadronic inputs and enhance the sensitivity to New Physics" (JHEP 12 (2014) 125, (SDG, JM etal)).
- "...even optimized observables are affected by sizable uncertainties, since hadronic contributions generated by current-current operators with charm are difficult to estimate, especially for q² ~ 4m_c² ~ 6.8 GeV²." (JHEP 06 (2016) 116, (LS, AP etal)).
- Plethora of data. Data-Driven Analysis: Let data decide the model. Works in principle for both NP and Hadronic (form factor) models. (For form factor "model selection": look into JHEP 06, 165 (2020) ,(SJ,SN,SP) & JHEP 08 (2020) 08, 006, (SI, RW).

The problem of model selection

Slide credit: Andrew Ng

The problem of Model selection

The problem of Model selection

- The general problem of model selection: A model can almost never represent a certain observation exactly. Simplistic model → too few parameters → unrealistically simple assumptions → high bias → poor prediction. Large no. of parameters → fit noise as well → miss important trends.
- Motivation: "All models are wrong but some are useful." (George E.P. Box, Journal of the American Statistical Association, Volume 71, 1976-issue 356).

Model Selection: How?

Cross-Validation *does this...*

- One of the most powerful, reliable but computationally expensive methods.
- Most straightforward (most expensive) →Leave One Out Cross Validation:
 - 1. N data points and a set of models.
 - 2. Remove n-th data point from sample.
 - 3. Fit model to remaining N-1 points.
 - 4. Compute Loss for the n-th left out data point.
 - 5. Repeat.
 - 6. Calculate Mean Loss (MSE) for the model from step 4.
- Draws on predictive error ⇒ can detect under and overfitting.
- <u>Drawback</u>: Small data-set → becomes unstable

Model Selection: How?

AIC_c previously used in Eur.Phys.J. C79 (2019) no.1, 21

- AIC = χ^2_{min} + 2K <u>Akaike (1974) & Takeuchi (1976)</u> n \gg K
- AIC_c = χ^2_{min} + 2K + $\frac{2K(K+1)}{n-K-1}$ Sugiura (1978)

 $\frac{n}{K}$ < 40 , n = sample size and K = no. of parameters

- Model Selection: $\Delta AIC_{c}^{i} = AIC_{c}^{i} AIC_{c}^{min}$, $w_{i}^{\Delta AIC_{c}} = \frac{e^{\left(-\frac{\Delta AIC_{c}^{i}}{2}\right)}}{\sum_{r=1}^{R} e^{\left(-\frac{\Delta AIC_{c}^{i}}{2}\right)}}$
- <u>Drawback:</u> Depend on MLE estimate and don't account for uncertainty in data. Too Simple models selected.

So a comparative global $b \rightarrow s \mu^+ \mu^-$?

- 9 C_W's (Wilson Coefficients) \rightarrow C'₇, Δ C₉, C'₉, Δ C₁₀, C'₁₀, C_S, C'_S, C_P, C'_P
- All real \rightarrow 511 combinations, 9 parameters .
- Complex →1022 (Real+Real&Imaginary), 18 parameters.
- > 200 obs. \Rightarrow Cross Validation can be done
- 2 types of Angular obs. \rightarrow
 - 1. Unbinned Max. Likelihood (total >210)
 - 2. Principal Moments (total >250)
- Neither $w_i^{\Delta AIC_c}$ nor MSE tells the whole truth.
- Why not use both $w_i^{\Delta AIC_c}$ and MSE?

Methodology

- **Define models:** Real \rightarrow 511 models, Complex \rightarrow 1022
- **Optimize:** Frequentist χ^2 optimization on all models. 5 types of fit corresponding to the five datasets .
- All optimizations done with a Mathematica package OpTex (S.Patra).
- Post Process: Find outliers ("Pulls") & "influential data" ("Cook's distances"). Normality check for pull distribution.
- Fisher Matrix: Gaussian parameter-profile likelihoods \rightarrow HESSE errors. Profile Likelihood curve: 1σ CL of profile likelihoods of the said parameter.

Results: Model selection (Likelihood 2020)

Results: Model Selection (New data)

23

The impact of $R_{K^{(*)}}$ (Moments)

The impact of $R_{K^{(*)}}$ (Likelihood)

25

$R_{K^{(*)}}$ predictions

 $R_{K^*}^{Low}(LHCb)$

 $R_K(LHCb)$

 $R_{K^*}^{Cen}(LHCb)$

26

P'_5 predictions

$R_{K^*}^{low}$ and Radiative constraints

Constraints from $B_s \rightarrow \mu\mu$

q² distributions for observables

 q^2

Discussions and Future Prospects

- No NP in electron modes.
- Correlations between SM and NP parameters neglected. Only analysis by 2006.03489 (FM etal., GAMBIT) involving "Re(C_{7.9,10})" only.
- Involved analysis involving imaginary parts.
- Comparing distributions rather than MLE estimates: Bayesian model selection.
- Data points with large uncertainties: Bayesian might miss portions of parameter space. (shown for b→ cτν in talk by S.P. and 2008.04316 (SN, SP etal.)): Neural Network.

We're on it. Stay Tuned!

backup: q^2 distributions for observables (w.o. LFUV) (moments)

backup: q^2 distributions for observables (w.o. LFUV) (moments)

Results: Comparison: CP averaged (Likelihood)

Results: Comparison: Optimized (Moment)

Backup: Results: Comparison: CP averaged (Moments)

Backup: Results: Comparison: Optimized (Likelihood)

38

Backup: Allowed parameter spaces (1 & 2)

Backup: Zero crossing values

backup: Results: Model Selection (Old data)

backup: Results: Model Selection (Old data)

TABLE II: Fit-qualities, model selection criteria, parameter estimates and effects on radiative decays for the 'best' selected models with the 'Old' data-set, with the 'Moments' estimate of the angular observables. Selected models are obtained from fig. 1a. Last four columns showcase the deviations (in units of ' σ ') between the experimental value of the radiative decays and the corresponding value obtained with the fit results.

Model	$\chi^2_{\rm Min}/$	p-val	$\omega^{\Delta AIC_c}$	MSE_{X-val}	Parameter	Deviation in σ			
Index	DOF	(%)	(%)		Values	$B \rightarrow X_s \gamma$	$B^+ \to K^* \gamma$	$\Delta {\rm B}^0 \to K^* \gamma$	$\Delta B_s \to \phi \gamma$
2	245.67/254	63.5	5.	0.918	$\Delta C_9 \rightarrow -1.26 \pm 0.14$	-	-	-	-
10	244 92/253	63.1	2.6	0.916	$C_7' \to 0.013 \pm 0.015$	- 0.32	-0.87	-1.06	1.99
10	244.52/200	05.1	2.0	0.910	$\Delta C_9 \rightarrow -1.3 \pm 0.15$	- 0.52	-0.87	-1.00	1.22
19	245 42/253	62.2	2	0.026	$\Delta C_9 \rightarrow -1.22 \pm 0.16$		-	-	-
15	240.42/200	02.2	2.	0.520	$\Delta C_{10} \rightarrow 0.061 \pm 0.123$				
21	245 48/253	62.1	2	0.923	$\Delta C_9 \rightarrow -1.27 \pm 0.15$	_	_	_	_
21	240.40/200	02.1	2.	0.020	$C_S \rightarrow -0.021 \pm 0.026$	_			
22	245 51/253	62	19	0.923	$\Delta C_9 \rightarrow -1.27 \pm 0.15$	_	_	_	_
22	240.01/200	02.	1.5	0.020	$C_S' \rightarrow 0.02 \pm 0.026$	_			
18	245 55/253	62	19	0.915	$\Delta C_9 \rightarrow -1.25 \pm 0.14$	_	_	_	_
10	240.00/200	02.	1.5	0.010	$C_9' \rightarrow 0.067 \pm 0.195$	_			
20	245 59/253	61.9	19	0.92	$\Delta C_9 \rightarrow -1.26 \pm 0.14$	_	_	_	_
20	240.03/200	01.5	1.5	0.52	$C_{10}' \rightarrow -0.03 \pm 0.109$				

TABLE III: Same as table II, but with the 'Likelihood' estimate of the angular observables. Selected models are obtained from fig. 1b.

Model	$\chi^2_{\rm Min}/$	p-val	$\omega^{\Delta AIC_c}$	$\mathrm{MSE}_{X-\mathrm{val}}$	Parameter		Devia	tion in σ	
Index	DOF	(%)	(%)		Values	$B \rightarrow X_s \gamma$	$B^+ \to K^* \gamma$	$\Delta {\rm B}^0 \to K^* \gamma$	$\Delta B_s \rightarrow \phi \gamma$
10	213 78/200	30 G	5.9	0.073	$C_7^\prime ightarrow 0.028 \pm 0.015$	0.37	-0.85	-1.04	1.94
10	213.10/203	33.0	0.0	0.575	$\Delta C_9 \rightarrow -1.37 \pm 0.14$	0.57	-0.05	-1.04	1.24
2	217.19/210	35.2	2.7	0.989	$\Delta C_9 \rightarrow -1.28 \pm 0.13$	_	_	_	-
					$C'_7 \to 0.029 \pm 0.015$	-			
49	213.2/208	38.8	2.5	0.981	$\Delta C_9 \rightarrow -1.4 \pm 0.14$	0.38	-0.85	-1.04	1.25
					$C_S \to -0.028 \pm 0.019$				
					$C_7' \rightarrow 0.029 \pm 0.015$				
50	213.23/208	38.7	2.5	0.981	$\Delta C_9 \rightarrow -1.4 \pm 0.14$	0.38	-0.85	-1.04	1.25
					$C_S' \rightarrow 0.028 \pm 0.019$	_			
					$C_7' \rightarrow 0.029 \pm 0.015$				
47	213.65/208	37.9	2.	0.976	$\Delta C_9 \rightarrow -1.39 \pm 0.15$	0.38	-0.85	-1.04	1.25
					$\Delta C_{10} \rightarrow -0.042 \pm 0.117$	_			
					$C_7' \rightarrow 0.027 \pm 0.015$				
48	213.74/208	37.8	1.9	0.976	$\Delta C_9 \rightarrow -1.37 \pm 0.14$	0.36	-0.85	-1.04	1.24
					$C_{10}' \rightarrow -0.024 \pm 0.111$	_			
					$C_7' \to 0.027 \pm 0.015$				
46	213.77/208	37.7	1.9	0.976	$\Delta C_9 \rightarrow -1.37 \pm 0.14$	0.37	-0.85	-1.04	1.24
					$C'_9 \rightarrow 0.017 \pm 0.217$				

backup:Results: Model Selection (New data)

9

TABLE IV: Fit-qualities, model selection criteria, parameter estimates and effects on radiative decays for the 'best' selected models with the 'New' data-set, with the 'Moments' estimate of the angular observables. Selected models are obtained from fig. 2a. Last four columns showcase the deviations (in units of ' σ ') between the experimental value of the radiative decays and the corresponding value obtained with the fit results.

Model	$\chi^2_{\rm Min}/$	p-val	$\omega^{\Delta AIC_c}$	MSE_{X-val}	Parameter		Devia	ation in σ	(r)
Index	DOF	(%)	(%)		Values	$B \rightarrow X_s \gamma$	$B^+ \to K^* \gamma$	$\Delta {\rm B}^0 \to K^* \gamma$	$\Delta B_s \rightarrow \phi \gamma$
18	250 28/256	58.0	34	0.917	$\Delta C_9 \rightarrow -1.13 \pm 0.13$	_	_	_	_
10	200.20/200	00.9	0.1	0.311	$C_9' ightarrow 0.25 \pm 0.17$				
2	252.44/257	56.9	3.2	0.933	$\Delta C_9 \rightarrow -1.12 \pm 0.13$	-	-	1000	-
					$\Delta C_9 \rightarrow -1.18 \pm 0.14$	_			
76	249.12/255	59.2	2.2	0.918	$C_9^\prime ightarrow 0.34{\pm}0.19$	-	-	1000	-
					$C_S \rightarrow -0.035 \pm 0.016$				
					$\Delta C_9 \rightarrow -1.18 \pm 0.14$				
77	249.16/255	59.1	2.1	0.918	$C_9^\prime ightarrow 0.34 {\pm} 0.19$	—	-		-
					$C_S^\prime \rightarrow 0.035{\pm}0.016$				
20	251 52/256	567	18	0.928	$\Delta C_9 \rightarrow -1.15 \pm 0.14$	_	_	_	-
20	201.02/200	00.1	110	0.020	$C_{10}' \to -0.1 \pm 0.104$				
10	251 97/256	55.9	14	0.932	$C_7^\prime ightarrow 0.01 {\pm} 0.015$	0.31	-0.87	-1.06	1.22
10	201101/200	0010		01002	$\Delta C_9 \rightarrow -1.15 \pm 0.14$	-	0.01	1100	
					$C_7' ightarrow 0.0058 \pm 0.0155$				
46	250.14/255	57.4	1.3	0.922	$\Delta C_9 \rightarrow -1.15 \pm 0.14$	0.3	-0.87	-1.06	1.22
					$C_9^\prime ightarrow 0.24 \pm 0.18$				
					$\Delta C_9 \rightarrow -1.16 \pm 0.15$				
74	250.16/255	57.4	1.3	0.925	$C_{9}' \rightarrow 0.26 \pm 0.17$		_		
				6	$\Delta C_{10} \rightarrow -0.041 \pm 0.118$				
					$\Delta C_9 \rightarrow -1.12 \pm 0.14$				
75	250.21/255	57.3	1.2	0.923	$C_9' ightarrow 0.3 \pm 0.26$	3 	-	1000	3
					$C_{10}' ightarrow 0.04 \pm 0.157$				

TABLE V: Same as the table IV, but with the 'Likelihood' estimate of the angular observables. Selected models are obtained from fig. 2b.

Model	$\chi^2_{\rm Min}/$	p-val	$\omega^{\Delta AIC_c}$	MSE_{X-val}	Parameter		Devia	ation in σ	
Index	DOF	(%)	(%)		Values	$B \rightarrow X_s \gamma$	$B^+ \to K^* \gamma$	$\Delta {\rm B^0} \to K^* \gamma$	$\Delta B_s \rightarrow \phi \gamma$
132	217.02/210	35.5	3.7	0.985	$C'_7 \to 0.04 \pm 0.015$ $\Delta C_9 \to -1.39 \pm 0.13$ $C'_9 \to 0.45 \pm 0.2$ $C_S \to -0.042 \pm 0.013$	0.44	-0.82	-1.02	1.27
133	217.07/210	35.4	3.6	0.986	$C_7' \to 0.04 \pm 0.015$ $\Delta C_9 \to -1.39 \pm 0.13$ $C_9' \to 0.45 \pm 0.2$ $C_S' \to 0.042 \pm 0.013$	0.44	-0.82	-1.02	1.27
130	217.58/210	34.5	2.8	0.976	$C'_7 \rightarrow 0.044 \pm 0.015$ $\Delta C_9 \rightarrow -1.42 \pm 0.14$ $C'_9 \rightarrow 0.32 \pm 0.19$ $\Delta C_{10} \rightarrow -0.16 \pm 0.11$	0.47	-0.81	-1.01	1.28
46	219.66/211	32.7	2.8	0.988	$C'_{7} \to 0.04 \pm 0.015$ $\Delta C_{9} \to -1.34 \pm 0.13$ $C'_{9} \to 0.33 \pm 0.2$	0.44	-0.82	-1.02	1.27
47	220.36/211	31.5	2.	0.995	$C'_7 \rightarrow 0.048 \pm 0.015$ $\Delta C_9 \rightarrow -1.43 \pm 0.15$ $\Delta C_{10} \rightarrow -0.16 \pm 0.11$	0.5	-0.8	-1.	1.29
10	222.46/212	29.7	1.9	1.001	$C'_7 \rightarrow 0.043 \pm 0.015$ $\Delta C_9 \rightarrow -1.33 \pm 0.13$	0.46	-0.81	-1.01	1.28
257	216.47/209	34.7	1.7	0.99	$C_7 \rightarrow 0.042 \pm 0.015$ $\Delta C_9 \rightarrow -1.42 \pm 0.14$ $C'_9 \rightarrow 0.41 \pm 0.21$ $\Delta C_{10} \rightarrow -0.091 \pm 0.123$ $C_{r_0} \rightarrow 0.026 \pm 0.017$	0.46	-0.82	-1.01	1.28
258	216.51/209	34.6	1.7	0.99	$\begin{array}{c} C_{S} \rightarrow -0.35\pm 0.017\\ C_{7}^{\prime} \rightarrow 0.042\pm 0.015\\ \Delta C_{9} \rightarrow -1.42\pm 0.14\\ C_{9}^{\prime} \rightarrow 0.41\pm 0.21\\ \Delta C_{10} \rightarrow -0.092\pm 0.123\\ C_{S}^{\prime} \rightarrow 0.036\pm 0.017 \end{array}$	0.46	-0.82	-1.01	1.28